These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38652809)

  • 1. Formation of Supernarrow Borophene Nanoribbons.
    Wang H; Ding P; Xia GJ; Zhao X; E W; Yu M; Ma Z; Wang YG; Wang LS; Li J; Yang X
    Angew Chem Int Ed Engl; 2024 Jul; 63(28):e202406535. PubMed ID: 38652809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of Quantum-Confined Borophene Nanoribbons.
    Li Q; Wang L; Li H; Chan MKY; Hersam MC
    ACS Nano; 2024 Jan; 18(1):483-491. PubMed ID: 37939213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanointerconnect design based on edge fluorinated/hydrogenated zigzag borophene nanoribbons: an
    Kharwar S; Singh S; Jaiswal NK; Mohammed MKA
    Phys Chem Chem Phys; 2023 Feb; 25(6):5122-5129. PubMed ID: 36722994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Edge-Dependent Electronic and Magnetic Characteristics of Freestanding
    Izadi Vishkayi S; Bagheri Tagani M
    Nanomicro Lett; 2018; 10(1):14. PubMed ID: 30393663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. What will freestanding borophene nanoribbons look like? An analysis of their possible structures, magnetism and transport properties.
    García-Fuente A; Carrete J; Vega A; Gallego LJ
    Phys Chem Chem Phys; 2017 Jan; 19(2):1054-1061. PubMed ID: 27976763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of strain and electric fields on the electronic transport properties of single-layer β
    Davoudiniya M; Mirabbaszadeh K
    Phys Chem Chem Phys; 2021 Sep; 23(34):18647-18658. PubMed ID: 34612402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-Termination of Borophene Edges.
    Qiu L; Mu Y; Kim SY; Ding F
    JACS Au; 2024 Jan; 4(1):116-124. PubMed ID: 38274266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manipulation of Spin Polarization in Boron-Substituted Graphene Nanoribbons.
    Sun K; Silveira OJ; Saito S; Sagisaka K; Yamaguchi S; Foster AS; Kawai S
    ACS Nano; 2022 Jul; 16(7):11244-11250. PubMed ID: 35730993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Borophene Synthesis on Au(111).
    Kiraly B; Liu X; Wang L; Zhang Z; Mannix AJ; Fisher BL; Yakobson BI; Hersam MC; Guisinger NP
    ACS Nano; 2019 Apr; 13(4):3816-3822. PubMed ID: 30844248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced electron transport and self-similarity in quasiperiodic borophene nanoribbons with line defects.
    Hu PJ; Ding JT; Liang ZR; Fang TF; Guo AM; Sun QF
    Nanoscale; 2023 Jun; 15(25):10740-10748. PubMed ID: 37323016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Freestanding χ
    Izadi Vishkayi S; Bagheri Tagani M
    Phys Chem Chem Phys; 2018 Apr; 20(15):10493-10501. PubMed ID: 29617014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the Magnetism of Topological End States in 5-Armchair Graphene Nanoribbons.
    Lawrence J; Brandimarte P; Berdonces-Layunta A; Mohammed MSG; Grewal A; Leon CC; Sánchez-Portal D; de Oteyza DG
    ACS Nano; 2020 Apr; 14(4):4499-4508. PubMed ID: 32101402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monolayer Borophene Formation on Cu(111) Surface Triggered by
    Li H; Yang J; Ma Y; Liu G; Xu X; Huo Z; Chen J; Li J; Zhang W; Wang K; Chen L; Xiao X
    Small; 2024 Feb; 20(7):e2303502. PubMed ID: 37840447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybridization induced metallic and magnetic edge states in noble transition-metal-dichalcogenides of PtX
    Liu S; Liu Z
    Phys Chem Chem Phys; 2018 Aug; 20(33):21441-21446. PubMed ID: 30087962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Boron and nitrogen impurities in SiC nanoribbons: an ab initio investigation.
    Costa CD; Morbec JM
    J Phys Condens Matter; 2011 May; 23(20):205504. PubMed ID: 21540516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Borophene: Current Status, Challenges and Opportunities.
    Hou C; Tai G; Wu Z; Hao J
    Chempluschem; 2020 Sep; 85(9):2186-2196. PubMed ID: 32989917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum Confinement in Epitaxial Armchair Graphene Nanoribbons on SiC Sidewalls.
    Nhung Nguyen TT; Power SR; Karakachian H; Starke U; Tegenkamp C
    ACS Nano; 2023 Oct; 17(20):20345-20352. PubMed ID: 37788294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Edge State Engineering of Graphene Nanoribbons.
    Su X; Xue Z; Li G; Yu P
    Nano Lett; 2018 Sep; 18(9):5744-5751. PubMed ID: 30111118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum transport along the armchair and zigzag edges of β
    Davoudiniya M; Mirabbaszadeh K
    Phys Chem Chem Phys; 2021 Dec; 23(46):26285-26295. PubMed ID: 34787129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of bilayer borophene.
    Chen C; Lv H; Zhang P; Zhuo Z; Wang Y; Ma C; Li W; Wang X; Feng B; Cheng P; Wu X; Wu K; Chen L
    Nat Chem; 2022 Jan; 14(1):25-31. PubMed ID: 34764470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.