These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38652991)

  • 21. Remote sensing for restoration ecology: Application for restoring degraded, damaged, transformed, or destroyed ecosystems.
    Reif MK; Theel HJ
    Integr Environ Assess Manag; 2017 Jul; 13(4):614-630. PubMed ID: 27627787
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of protected areas in mitigating human impact in the world's last wilderness areas.
    Anderson E; Mammides C
    Ambio; 2020 Feb; 49(2):434-441. PubMed ID: 31214981
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The call of the wild: Investigating the potential for ecoacoustic methods in mapping wilderness areas.
    Carruthers-Jones J; Eldridge A; Guyot P; Hassall C; Holmes G
    Sci Total Environ; 2019 Dec; 695():133797. PubMed ID: 31421345
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conservation planning for biodiversity and wilderness: a real-world example.
    Ceauşu S; Gomes I; Pereira HM
    Environ Manage; 2015 May; 55(5):1168-80. PubMed ID: 25835944
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spatiotemporal remote sensing of ecosystem change and causation across Alaska.
    Pastick NJ; Jorgenson MT; Goetz SJ; Jones BM; Wylie BK; Minsley BJ; Genet H; Knight JF; Swanson DK; Jorgenson JC
    Glob Chang Biol; 2019 Mar; 25(3):1171-1189. PubMed ID: 29808518
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Monitoring riverine traffic from space: The untapped potential of remote sensing for measuring human footprint on inland waterways.
    Smigaj M; Hackney CR; Diem PK; Tri VPD; Ngoc NT; Bui DD; Darby SE; Leyland J
    Sci Total Environ; 2023 Feb; 860():160363. PubMed ID: 36423834
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A hyper-temporal remote sensing protocol for high-resolution mapping of ecological sites.
    Maynard JJ; Karl JW
    PLoS One; 2017; 12(4):e0175201. PubMed ID: 28414731
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rethinking urban wilderness: Status, hotspots, and prospects of ecosystem services.
    Lu J; Cheng Y; Qi X; Chen H; Lin X
    J Environ Manage; 2024 Jul; 364():121366. PubMed ID: 38870786
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wilderness forms and their implications for global environmental policy and conservation.
    Pérez-Hämmerle KV; Moon K; Venegas-Li R; Maxwell S; Simmonds JS; Venter O; Garnett ST; Possingham HP; Watson JEM
    Conserv Biol; 2022 Aug; 36(4):e13875. PubMed ID: 34961974
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Remote sensing of soil degradation: introduction.
    Lobell DB
    J Environ Qual; 2010; 39(1):1-4. PubMed ID: 20048288
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Remote sensing of coral reefs and their physical environment.
    Mumby PJ; Skirving W; Strong AE; Hardy JT; LeDrew EF; Hochberg EJ; Stumpf RP; David LT
    Mar Pollut Bull; 2004 Feb; 48(3-4):219-28. PubMed ID: 14972573
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Ecological Environment Assessment and Driving Mechanism Analysis of Nagqu and Amdo Sections of Qinghai-Xizang Highway Based on Improved Remote Sensing Ecological Index].
    Fu KX; Jia GD; Yu XX; Wang X
    Huan Jing Ke Xue; 2024 Mar; 45(3):1586-1597. PubMed ID: 38471872
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Remote sensing of ecosystem health: opportunities, challenges, and future perspectives.
    Li Z; Xu D; Guo X
    Sensors (Basel); 2014 Nov; 14(11):21117-39. PubMed ID: 25386759
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An integrated system for rapid assessment of ecological quality based on remote sensing data.
    Ding Q; Wang L; Fu M; Huang N
    Environ Sci Pollut Res Int; 2020 Sep; 27(26):32779-32795. PubMed ID: 32519104
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A review on the research progress of lake water volume estimation methods.
    An C; Zhang F; Chan NW; Johnson VC; Shi J
    J Environ Manage; 2022 Jul; 314():115057. PubMed ID: 35452887
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identifying local-scale wilderness for on-ground conservation actions within a global biodiversity hotspot.
    Lin S; Wu R; Hua C; Ma J; Wang W; Yang F; Wang J
    Sci Rep; 2016 May; 6():25898. PubMed ID: 27181186
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rangeland Condition Monitoring: A New Approach Using Cross-Fence Comparisons of Remotely Sensed Vegetation.
    Kilpatrick AD; Lewis MM; Ostendorf B
    PLoS One; 2015; 10(11):e0142742. PubMed ID: 26565801
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Research on remote sensing ecological environmental assessment method optimized by regional scale.
    Jiang F; Zhang Y; Li J; Sun Z
    Environ Sci Pollut Res Int; 2021 Dec; 28(48):68174-68187. PubMed ID: 34264496
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A new multiscale approach for monitoring vegetation using remote sensing-based indicators in laboratory, field, and landscape.
    Lausch A; Pause M; Merbach I; Zacharias S; Doktor D; Volk M; Seppelt R
    Environ Monit Assess; 2013 Feb; 185(2):1215-35. PubMed ID: 22527462
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Keeping it wild: mapping wilderness character in the United States.
    Carver S; Tricker J; Landres P
    J Environ Manage; 2013 Dec; 131():239-55. PubMed ID: 24184527
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.