BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38653066)

  • 21. Extramuscular myofascial force transmission alters substantially the acute effects of surgical aponeurotomy: assessment by finite element modeling.
    Yucesoy CA; Koopman BH; Grootenboer HJ; Huijing PA
    Biomech Model Mechanobiol; 2008 Jun; 7(3):175-89. PubMed ID: 17486381
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Extracellular matrix remodelling induced by alternating electrical and mechanical stimulations increases the contraction of engineered skeletal muscle tissues.
    Kim H; Kim MC; Asada HH
    Sci Rep; 2019 Feb; 9(1):2732. PubMed ID: 30804393
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure and function of the skeletal muscle extracellular matrix.
    Gillies AR; Lieber RL
    Muscle Nerve; 2011 Sep; 44(3):318-31. PubMed ID: 21949456
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multiscale modeling of skeletal muscle to explore its passive mechanical properties and experiments verification.
    Liu F; Wang M; Ma Y
    Math Biosci Eng; 2022 Jan; 19(2):1251-1279. PubMed ID: 35135203
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acute extracellular matrix, inflammatory and MAPK response to lengthening contractions in elderly human skeletal muscle.
    Sorensen JR; Skousen C; Holland A; Williams K; Hyldahl RD
    Exp Gerontol; 2018 Jun; 106():28-38. PubMed ID: 29466693
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Finite element modeling of passive material influence on the deformation and force output of skeletal muscle.
    Hodgson JA; Chi SW; Yang JP; Chen JS; Edgerton VR; Sinha S
    J Mech Behav Biomed Mater; 2012 May; 9():163-83. PubMed ID: 22498294
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Correlating Skeletal Muscle Output Force and Intramuscular Pressure Via a Three-Dimensional Finite Element Muscle Model.
    El Bojairami I; Driscoll M
    J Biomech Eng; 2022 Apr; 144(4):. PubMed ID: 34729583
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanical properties of meniscal circumferential fibers using an inverse finite element analysis approach.
    De Rosa M; Filippone G; Best TM; Jackson AR; Travascio F
    J Mech Behav Biomed Mater; 2022 Feb; 126():105073. PubMed ID: 34999488
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multiscale modeling of passive material influences on deformation and force output of skeletal muscles.
    He X; Taneja K; Chen JS; Lee CH; Hodgson J; Malis V; Sinha U; Sinha S
    Int J Numer Method Biomed Eng; 2022 Apr; 38(4):e3571. PubMed ID: 35049153
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transmission of forces within mammalian skeletal muscles.
    Monti RJ; Roy RR; Hodgson JA; Edgerton VR
    J Biomech; 1999 Apr; 32(4):371-80. PubMed ID: 10213027
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Muscle extracellular matrix applies a transverse stress on fibers with axial strain.
    Smith LR; Fowler-Gerace LH; Lieber RL
    J Biomech; 2011 May; 44(8):1618-20. PubMed ID: 21450292
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The need for speed - Does the force-velocity property significantly alter strain distributions within skeletal muscle?
    DiSalvo MD; Blemker SS
    J Biomech; 2024 Apr; 167():112089. PubMed ID: 38608614
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recurrent neural network to predict hyperelastic constitutive behaviors of the skeletal muscle.
    Ballit A; Dao TT
    Med Biol Eng Comput; 2022 Apr; 60(4):1177-1185. PubMed ID: 35244859
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lower skeletal muscle capillarization in hypertensive elderly men.
    Gueugneau M; Coudy-Gandilhon C; Meunier B; Combaret L; Taillandier D; Polge C; Attaix D; Roche F; Féasson L; Barthélémy JC; Béchet D
    Exp Gerontol; 2016 Apr; 76():80-8. PubMed ID: 26826452
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Parametric study of a Hill-type hyperelastic skeletal muscle model.
    Lu YT; Beldie L; Walker B; Richmond S; Middleton J
    Proc Inst Mech Eng H; 2011 May; 225(5):437-47. PubMed ID: 21755774
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigation of interaction phenomena between crural fascia and muscles by using a three-dimensional numerical model.
    Pavan PG; Pachera P; Forestiero A; Natali AN
    Med Biol Eng Comput; 2017 Sep; 55(9):1683-1691. PubMed ID: 28188469
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of aging, exercise, and disease on force transfer in skeletal muscle.
    Hughes DC; Wallace MA; Baar K
    Am J Physiol Endocrinol Metab; 2015 Jul; 309(1):E1-E10. PubMed ID: 25968577
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A mathematical model of force transmission from intrafascicularly terminating muscle fibers.
    Sharafi B; Blemker SS
    J Biomech; 2011 Jul; 44(11):2031-9. PubMed ID: 21676398
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Alignment, cross linking, and beyond: a collagen architect's guide to the skeletal muscle extracellular matrix.
    Wohlgemuth RP; Brashear SE; Smith LR
    Am J Physiol Cell Physiol; 2023 Oct; 325(4):C1017-C1030. PubMed ID: 37661921
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Variability of quadriceps femoris motor neuron discharge and muscle force in human aging.
    Welsh SJ; Dinenno DV; Tracy BL
    Exp Brain Res; 2007 May; 179(2):219-33. PubMed ID: 17136528
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.