BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38653066)

  • 41. Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading.
    Kjaer M
    Physiol Rev; 2004 Apr; 84(2):649-98. PubMed ID: 15044685
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Finite element simulation of skeletal muscular structures obtained from images of histological serial sections.
    Weichert F; Schröder A; Landes C; Walczak L; Müller H; Wagner M
    J Biomech; 2010 May; 43(8):1483-7. PubMed ID: 20181337
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Finite element analysis of traction force microscopy: influence of cell mechanics, adhesion, and morphology.
    Zielinski R; Mihai C; Kniss D; Ghadiali SN
    J Biomech Eng; 2013 Jul; 135(7):71009. PubMed ID: 23720059
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Skeletal muscle: Modeling the mechanical behavior by taking the hierarchical microstructure into account.
    Lamsfuss J; Bargmann S
    J Mech Behav Biomed Mater; 2021 Oct; 122():104670. PubMed ID: 34274750
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of inter- and extramuscular myofascial force transmission on adjacent synergistic muscles: assessment by experiments and finite-element modeling.
    Yucesoy CA; Koopman BH; Baan GC; Grootenboer HJ; Huijing PA
    J Biomech; 2003 Dec; 36(12):1797-811. PubMed ID: 14614933
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nonlinear Elasticity of the ECM Fibers Facilitates Efficient Intercellular Communication.
    Sopher RS; Tokash H; Natan S; Sharabi M; Shelah O; Tchaicheeyan O; Lesman A
    Biophys J; 2018 Oct; 115(7):1357-1370. PubMed ID: 30217380
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Increased Stiffness in Aged Skeletal Muscle Impairs Muscle Progenitor Cell Proliferative Activity.
    Lacraz G; Rouleau AJ; Couture V; Söllrald T; Drouin G; Veillette N; Grandbois M; Grenier G
    PLoS One; 2015; 10(8):e0136217. PubMed ID: 26295702
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A framework for structured modeling of skeletal muscle.
    Lemos RR; Epstein M; Herzog W; Wyvill B
    Comput Methods Biomech Biomed Engin; 2004 Dec; 7(6):305-17. PubMed ID: 15621651
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Stiff muscle fibers in calf muscles of patients with cerebral palsy lead to high passive muscle stiffness.
    Mathewson MA; Chambers HG; Girard PJ; Tenenhaus M; Schwartz AK; Lieber RL
    J Orthop Res; 2014 Dec; 32(12):1667-74. PubMed ID: 25138654
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Single skeletal muscle fiber behavior after a quick stretch in young and older men: a possible explanation of the relative preservation of eccentric force in old age.
    Ochala J; Dorer DJ; Frontera WR; Krivickas LS
    Pflugers Arch; 2006 Jul; 452(4):464-70. PubMed ID: 16622703
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Inferences on force transmission from muscle fiber architecture of the canine diaphragm.
    Boriek AM; Zhu D; Zeller M; Rodarte JR
    Am J Physiol Regul Integr Comp Physiol; 2001 Jan; 280(1):R156-65. PubMed ID: 11124147
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Aging of the skeletal muscle extracellular matrix drives a stem cell fibrogenic conversion.
    Stearns-Reider KM; D'Amore A; Beezhold K; Rothrauff B; Cavalli L; Wagner WR; Vorp DA; Tsamis A; Shinde S; Zhang C; Barchowsky A; Rando TA; Tuan RS; Ambrosio F
    Aging Cell; 2017 Jun; 16(3):518-528. PubMed ID: 28371268
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Growing Old Too Early: Skeletal Muscle Single Fiber Biomechanics in Ageing R349P Desmin Knock-in Mice Using the
    Pollmann C; Haug M; Reischl B; Prölß G; Pöschel T; Rupitsch SJ; Clemen CS; Schröder R; Friedrich O
    Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32752098
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Aging-related structural change in 3D extracellular matrix affects its mechanics.
    Park S; Kim B
    Med Eng Phys; 2022 Aug; 106():103843. PubMed ID: 35926954
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanisms causing effects of muscle position on proximo-distal muscle force differences in extra-muscular myofascial force transmission.
    Yucesoy CA; Maas H; Koopman BH; Grootenboer HJ; Huijing PA
    Med Eng Phys; 2006 Apr; 28(3):214-26. PubMed ID: 16102996
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Role of the Extracellular Matrix in Loss of Muscle Force With Age and Unloading Using Magnetic Resonance Imaging, Biochemical Analysis, and Computational Models.
    Sinha U; Malis V; Chen JS; Csapo R; Kinugasa R; Narici MV; Sinha S
    Front Physiol; 2020; 11():626. PubMed ID: 32625114
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Theoretical predictions of the effects of force transmission by desmin on intersarcomere dynamics.
    Meyer GA; Kiss B; Ward SR; Morgan DL; Kellermayer MS; Lieber RL
    Biophys J; 2010 Jan; 98(2):258-66. PubMed ID: 20338847
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A nonlinear dynamic finite element approach for simulating muscular hydrostats.
    Vavourakis V; Kazakidi A; Tsakiris DP; Ekaterinaris JA
    Comput Methods Biomech Biomed Engin; 2014; 17(8):917-31. PubMed ID: 23025686
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Role of extracellular matrix in development of skeletal muscle and postmortem aging of meat.
    Nishimura T
    Meat Sci; 2015 Nov; 109():48-55. PubMed ID: 26141816
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Development and Validation of the Total HUman Model for Safety (THUMS) Toward Further Understanding of Occupant Injury Mechanisms in Precrash and During Crash.
    Iwamoto M; Nakahira Y; Kimpara H
    Traffic Inj Prev; 2015; 16 Suppl 1():S36-48. PubMed ID: 26027974
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.