BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38653093)

  • 1. Degradation of methylmercury into Hg(0) by the oxidation of iron(II) minerals.
    Xie F; Yuan Q; Meng Y; Luan F
    Water Res; 2024 Jun; 256():121645. PubMed ID: 38653093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mercury mobilization and speciation linked to bacterial iron oxide and sulfate reduction: A column study to mimic reactive transfer in an anoxic aquifer.
    Hellal J; Guédron S; Huguet L; Schäfer J; Laperche V; Joulian C; Lanceleur L; Burnol A; Ghestem JP; Garrido F; Battaglia-Brunet F
    J Contam Hydrol; 2015 Sep; 180():56-68. PubMed ID: 26275395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of radical-initiated methylmercury degradation in soil with coexisting Fe and Cu.
    Xie M; Zhang C; Liao X; Fan Z; Xie X; Huang C
    Sci Total Environ; 2019 Feb; 652():52-58. PubMed ID: 30359801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mercury Reduction by Nanoparticulate Vivianite.
    Etique M; Bouchet S; Byrne JM; ThomasArrigo LK; Kaegi R; Kretzschmar R
    Environ Sci Technol; 2021 Mar; 55(5):3399-3407. PubMed ID: 33554594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of homogeneous and surface-catalyzed mercury(II) reduction by iron(II).
    Amirbahman A; Kent DB; Curtis GP; Marvin-Dipasquale MC
    Environ Sci Technol; 2013 Jul; 47(13):7204-13. PubMed ID: 23731086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biotic and Abiotic Degradation of Methylmercury in Aquatic Ecosystems: A Review.
    Du H; Ma M; Igarashi Y; Wang D
    Bull Environ Contam Toxicol; 2019 May; 102(5):605-611. PubMed ID: 30603765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anaerobic Mercury Methylation and Demethylation by Geobacter bemidjiensis Bem.
    Lu X; Liu Y; Johs A; Zhao L; Wang T; Yang Z; Lin H; Elias DA; Pierce EM; Liang L; Barkay T; Gu B
    Environ Sci Technol; 2016 Apr; 50(8):4366-73. PubMed ID: 27019098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organomercurial Lyase (MerB)-Mediated Demethylation Decreases Bacterial Methylmercury Resistance in the Absence of Mercuric Reductase (MerA).
    Krout IN; Scrimale T; Vorojeikina D; Boyd ES; Rand MD
    Appl Environ Microbiol; 2022 Mar; 88(6):e0001022. PubMed ID: 35138926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Demethylation-The Other Side of the Mercury Methylation Coin: A Critical Review.
    Barkay T; Gu B
    ACS Environ Au; 2022 Mar; 2(2):77-97. PubMed ID: 37101582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydroxyl radical formation during oxygen-mediated oxidation of ferrous iron on mineral surface: Dependence on mineral identity.
    Chen N; Geng M; Huang D; Tan M; Li Z; Liu G; Zhu C; Fang G; Zhou D
    J Hazard Mater; 2022 Jul; 434():128861. PubMed ID: 35405609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mercury reduction and complexation by natural organic matter in anoxic environments.
    Gu B; Bian Y; Miller CL; Dong W; Jiang X; Liang L
    Proc Natl Acad Sci U S A; 2011 Jan; 108(4):1479-83. PubMed ID: 21220311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decreased bioavailability of both inorganic mercury and methylmercury in anaerobic sediments by sorption on iron sulfide nanoparticles.
    Xiang Y; Zhu A; Guo Y; Liu G; Chen B; He B; Liang Y; Yin Y; Cai Y; Jiang G
    J Hazard Mater; 2022 Feb; 424(Pt B):127399. PubMed ID: 34638072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effects of Dissimilatory Reduction of Goethite on Mercury Methylation by Shewanella oneidensis MR-1].
    Si YB; Sun L; Wang H
    Huan Jing Ke Xue; 2015 Jun; 36(6):2252-8. PubMed ID: 26387333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron redox cycling in layered clay minerals and its impact on contaminant dynamics: A review.
    Fan Q; Wang L; Fu Y; Li Q; Liu Y; Wang Z; Zhu H
    Sci Total Environ; 2023 Jan; 855():159003. PubMed ID: 36155041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hidden demethylation pathway removes mercury from rice plants and mitigates mercury flux to food chains.
    Tang W; Bai X; Zhou Y; Sonne C; Wu M; Lam SS; Hintelmann H; Mitchell CPJ; Johs A; Gu B; Nunes L; Liu C; Feng N; Yang S; Rinklebe J; Lin Y; Chen L; Zhang Y; Yang Y; Wang J; Li S; Wu Q; Ok YS; Xu D; Li H; Zhang XX; Ren H; Jiang G; Chai Z; Gao Y; Zhao J; Zhong H
    Nat Food; 2024 Jan; 5(1):72-82. PubMed ID: 38177223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of Hydroxyl Radical Production from Oxygenation of Reduced Iron Minerals and Their Reactivity with Trichloroethene: Effects of Iron Amounts, Iron Species, and Sulfate Reducing Bacteria.
    You X; Liu S; Berns-Herrboldt EC; Dai C; Werth CJ
    Environ Sci Technol; 2023 Mar; 57(12):4892-4904. PubMed ID: 36921080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High methylmercury production under ferruginous conditions in sediments impacted by sewage treatment plant discharges.
    Bravo AG; Bouchet S; Guédron S; Amouroux D; Dominik J; Zopfi J
    Water Res; 2015 Sep; 80():245-55. PubMed ID: 26005785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of Microaerophilic Iron(II)-Oxidizers to Iron(III) Mineral Formation.
    Maisch M; Lueder U; Laufer K; Scholze C; Kappler A; Schmidt C
    Environ Sci Technol; 2019 Jul; 53(14):8197-8204. PubMed ID: 31203607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fenton-like oxidation and mineralization of phenol using synthetic Fe(II)-Fe(III) green rusts.
    Hanna K; Kone T; Ruby C
    Environ Sci Pollut Res Int; 2010 Jan; 17(1):124-34. PubMed ID: 19350299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transformation and migration of Hg in a polluted alkaline paddy soil during flooding and drainage processes.
    Hu S; Zhang Y; Meng H; Yang Y; Chen G; Wang Q; Cheng K; Guo C; Li X; Liu T
    Environ Pollut; 2024 Mar; 345():123471. PubMed ID: 38336140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.