These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38653093)

  • 21. Oxidation of bioreduced iron-bearing clay mineral triggers arsenic immobilization.
    Zhao Z; Yuan Q; Meng Y; Luan F
    Environ Sci Pollut Res Int; 2022 Jun; 29(29):44874-44882. PubMed ID: 35138538
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Insights into phenanthrene attenuation by hydroxyl radicals from reduced iron-bearing mineral oxygenation.
    Wang L; Du H; Xu H; Li H; Li L
    J Hazard Mater; 2022 Oct; 439():129658. PubMed ID: 35901635
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling Mercury in Proteins.
    Parks JM; Smith JC
    Methods Enzymol; 2016; 578():103-22. PubMed ID: 27497164
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The interaction of mercury and methylmercury with chalcogenide nanoparticles.
    Wang X; Seelen EA; Mazrui NM; Kerns P; Suib SL; Zhao J; Mason RP
    Environ Pollut; 2019 Dec; 255(Pt 3):113346. PubMed ID: 31627051
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition of Extracellular Enzyme Activity by Reactive Oxygen Species upon Oxygenation of Reduced Iron-Bearing Minerals.
    Sheng Y; Hu J; Kukkadapu R; Guo D; Zeng Q; Dong H
    Environ Sci Technol; 2023 Feb; 57(8):3425-3433. PubMed ID: 36795461
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The divergent effects of nitrate and ammonium application on mercury methylation, demethylation, and reduction in flooded paddy slurries.
    Chen J; Hu G; Liu J; Poulain AJ; Pu Q; Huang R; Meng B; Feng X
    J Hazard Mater; 2023 Oct; 460():132457. PubMed ID: 37669605
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Abiotic dechlorination in the presence of ferrous minerals.
    Schaefer CE; Ho P; Berns E; Werth C
    J Contam Hydrol; 2021 Aug; 241():103839. PubMed ID: 34052750
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sulfate-reduction and methanogenesis are coupled to Hg(II) and MeHg reduction in rice paddies.
    Wu Q; Wang B; Hu H; Bravo AG; Bishop K; Bertilsson S; Meng B; Zhang H; Feng X
    J Hazard Mater; 2023 Oct; 460():132486. PubMed ID: 37690197
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microbial mercury transformation in anoxic freshwater sediments under iron-reducing and other electron-accepting conditions.
    Warner KA; Roden EE; Bonzongo JC
    Environ Sci Technol; 2003 May; 37(10):2159-65. PubMed ID: 12785521
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Degradation of monomethylmercury chloride by hydroxyl radicals in simulated natural waters.
    Chen J; Pehkonen SO; Lin CJ
    Water Res; 2003 May; 37(10):2496-504. PubMed ID: 12727262
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microbially Mediated Coupling of Fe and N Cycles by Nitrate-Reducing Fe(II)-Oxidizing Bacteria in Littoral Freshwater Sediments.
    Schaedler F; Lockwood C; Lueder U; Glombitza C; Kappler A; Schmidt C
    Appl Environ Microbiol; 2018 Jan; 84(2):. PubMed ID: 29101195
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An experimental approach to investigate mercury species transformations under redox oscillations in coastal sediments.
    Bouchet S; Bridou R; Tessier E; Rodriguez-Gonzalez P; Monperrus M; Abril G; Amouroux D
    Mar Environ Res; 2011 Feb; 71(1):1-9. PubMed ID: 20933266
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Critical Functions of Soil Components for In Situ Persulfate Oxidation of Sulfamethoxazole: Inherent Fe(II) Minerals-Coordinated Nonradical Pathway.
    Liang J; Duan X; Xu X; Zhang Z; Zhang J; Zhao L; Qiu H; Cao X
    Environ Sci Technol; 2024 Jan; 58(1):915-924. PubMed ID: 38088029
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mercury methylation and sulfate reduction rates in mangrove sediments, Rio de Janeiro, Brazil: The role of different microorganism consortia.
    Correia RRS; Guimarães JRD
    Chemosphere; 2017 Jan; 167():438-443. PubMed ID: 27750167
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reduced sulphur sources favour Hg
    Lavoie NC; Grégoire DS; Stenzler BR; Poulain AJ
    Geobiology; 2020 Jan; 18(1):70-79. PubMed ID: 31536173
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mercury transformations in algae, plants, and animals: The occurrence, mechanisms, and gaps.
    Li S; Li Z; Wu M; Zhou Y; Tang W; Zhong H
    Sci Total Environ; 2024 Feb; 911():168690. PubMed ID: 38000748
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microbial mercury methylation in the cryosphere: Progress and prospects.
    Sharma Ghimire P; Tripathee L; Zhang Q; Guo J; Ram K; Huang J; Sharma CM; Kang S
    Sci Total Environ; 2019 Dec; 697():134150. PubMed ID: 32380618
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chemical Reactivity Probes for Assessing Abiotic Natural Attenuation by Reducing Iron Minerals.
    Fan D; Bradley MJ; Hinkle AW; Johnson RL; Tratnyek PG
    Environ Sci Technol; 2016 Feb; 50(4):1868-76. PubMed ID: 26814150
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Aqueous monomethylmercury degradation using nanoscale zero-valent iron through oxidative demethylation and reductive isolation.
    Qasim GH; Fareed H; Lee M; Lee W; Han S
    J Hazard Mater; 2022 Aug; 435():128990. PubMed ID: 35523091
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fate of mercury species in the coastal plume of the Adour River estuary (Bay of Biscay, SW France).
    Sharif A; Monperrus M; Tessier E; Bouchet S; Pinaly H; Rodriguez-Gonzalez P; Maron P; Amouroux D
    Sci Total Environ; 2014 Oct; 496():701-713. PubMed ID: 25091142
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.