These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Parathyroid hormone induces epithelial-to-mesenchymal transition via the Wnt/β-catenin signaling pathway in human renal proximal tubular cells. Guo Y; Li Z; Ding R; Li H; Zhang L; Yuan W; Wang Y Int J Clin Exp Pathol; 2014; 7(9):5978-87. PubMed ID: 25337242 [TBL] [Abstract][Full Text] [Related]
3. Connective tissue growth factor induces tubular epithelial to mesenchymal transition through the activation of canonical Wnt signaling in vitro. Yang Z; Sun L; Nie H; Liu H; Liu G; Guan G Ren Fail; 2015 Feb; 37(1):129-35. PubMed ID: 25296105 [TBL] [Abstract][Full Text] [Related]
4. Protective role of kallistatin in renal fibrosis via modulation of Wnt/β-catenin signaling. Yiu WH; Li Y; Lok SWY; Chan KW; Chan LYY; Leung JCK; Lai KN; Tsu JHL; Chao J; Huang XR; Lan HY; Tang SCW Clin Sci (Lond); 2021 Feb; 135(3):429-446. PubMed ID: 33458750 [TBL] [Abstract][Full Text] [Related]
5. WISP1 silencing confers protection against epithelial-mesenchymal transition of renal tubular epithelial cells in rats via inactivation of the wnt/β-catenin signaling pathway in uremia. Chen YZ; Sun DQ; Zheng Y; Zheng GK; Chen RQ; Lin M; Huang LF; Huang C; Song D; Wu BQ J Cell Physiol; 2019 Jun; 234(6):9673-9686. PubMed ID: 30556898 [TBL] [Abstract][Full Text] [Related]
6. De novo expression of human leukocyte antigen-DR (HLA-DR) and loss of beta-catenin expression in tubular epithelial cells: a possible event in epithelial-mesenchymal transition in canine renal diseases. Benali SL; Lees GE; Nabity MB; Mantovani R; Bonsembiante F; Aresu L Vet J; 2013 Oct; 198(1):229-34. PubMed ID: 23850018 [TBL] [Abstract][Full Text] [Related]
7. Relaxin inhibits renal fibrosis and the epithelial-to-mesenchymal transition via the Wnt/β-catenin signaling pathway. Feiteng C; Lei C; Deng L; Chaoliang X; Zijie X; Yi S; Minglei S Ren Fail; 2022 Dec; 44(1):513-524. PubMed ID: 35311469 [TBL] [Abstract][Full Text] [Related]
8. Silencing of the lncRNA Zhang B; Zhao C; Hou L; Wu Y Am J Physiol Renal Physiol; 2020 Dec; 319(6):F1125-F1134. PubMed ID: 33135476 [TBL] [Abstract][Full Text] [Related]
9. Egr-1 mediates chronic hypoxia-induced renal interstitial fibrosis via the PKC/ERK pathway. Sun S; Ning X; Zhai Y; Du R; Lu Y; He L; Li R; Wu W; Sun W; Wang H Am J Nephrol; 2014; 39(5):436-48. PubMed ID: 24819335 [TBL] [Abstract][Full Text] [Related]
10. Brahma-related gene-1 promotes tubular senescence and renal fibrosis through Wnt/β-catenin/autophagy axis. Gong W; Luo C; Peng F; Xiao J; Zeng Y; Yin B; Chen X; Li S; He X; Liu Y; Cao H; Xu J; Long H Clin Sci (Lond); 2021 Aug; 135(15):1873-1895. PubMed ID: 34318888 [TBL] [Abstract][Full Text] [Related]
11. Wnt4 induces nephronic tubules in metanephric mesenchyme by a non-canonical mechanism. Tanigawa S; Wang H; Yang Y; Sharma N; Tarasova N; Ajima R; Yamaguchi TP; Rodriguez LG; Perantoni AO Dev Biol; 2011 Apr; 352(1):58-69. PubMed ID: 21256838 [TBL] [Abstract][Full Text] [Related]
12. Upregulation of miR-382 contributes to renal fibrosis secondary to aristolochic acid-induced kidney injury via PTEN signaling pathway. Wang X; Xue N; Zhao S; Shi Y; Ding X; Fang Y Cell Death Dis; 2020 Aug; 11(8):620. PubMed ID: 32796834 [TBL] [Abstract][Full Text] [Related]
13. Akt1 is involved in renal fibrosis and tubular apoptosis in a murine model of acute kidney injury-to-chronic kidney disease transition. Kim IY; Song SH; Seong EY; Lee DW; Bae SS; Lee SB Exp Cell Res; 2023 Mar; 424(2):113509. PubMed ID: 36773738 [TBL] [Abstract][Full Text] [Related]
14. Macrophage-derived exosomes promote telomere fragility and senescence in tubular epithelial cells by delivering miR-155. Yin Q; Tang TT; Lu XY; Ni WJ; Yin D; Zhang YL; Jiang W; Zhang Y; Li ZL; Wen Y; Gan WH; Zhang AQ; Lv LL; Wang B; Liu BC Cell Commun Signal; 2024 Jul; 22(1):357. PubMed ID: 38987851 [TBL] [Abstract][Full Text] [Related]
15. Chronic kidney disease induced by an adenine rich diet upregulates integrin linked kinase (ILK) and its depletion prevents the disease progression. de Frutos S; Luengo A; García-Jérez A; Hatem-Vaquero M; Griera M; O'Valle F; Rodríguez-Puyol M; Rodríguez-Puyol D; Calleros L Biochim Biophys Acta Mol Basis Dis; 2019 Jun; 1865(6):1284-1297. PubMed ID: 30726718 [TBL] [Abstract][Full Text] [Related]
16. Wnt9a Promotes Renal Fibrosis by Accelerating Cellular Senescence in Tubular Epithelial Cells. Luo C; Zhou S; Zhou Z; Liu Y; Yang L; Liu J; Zhang Y; Li H; Liu Y; Hou FF; Zhou L J Am Soc Nephrol; 2018 Apr; 29(4):1238-1256. PubMed ID: 29440280 [TBL] [Abstract][Full Text] [Related]
18. The differential expression of TGF-β1, ILK and wnt signaling inducing epithelial to mesenchymal transition in human renal fibrogenesis: an immunohistochemical study. Kim MK; Maeng YI; Sung WJ; Oh HK; Park JB; Yoon GS; Cho CH; Park KK Int J Clin Exp Pathol; 2013; 6(9):1747-58. PubMed ID: 24040439 [TBL] [Abstract][Full Text] [Related]
19. WNT signaling is required for peritoneal membrane angiogenesis. Padwal M; Cheng G; Liu L; Boivin F; Gangji AS; Brimble KS; Bridgewater D; Margetts PJ Am J Physiol Renal Physiol; 2018 Jun; 314(6):F1036-F1045. PubMed ID: 29363326 [TBL] [Abstract][Full Text] [Related]
20. WNT/β-catenin signal inhibitor IC-2-derived small-molecule compounds suppress TGF-β1-induced fibrogenic response of renal epithelial cells by inhibiting SMAD2/3 signalling. Hoi S; Tsuchiya H; Itaba N; Suzuki K; Oka H; Morimoto M; Takata T; Isomoto H; Shiota G Clin Exp Pharmacol Physiol; 2020 Jun; 47(6):940-946. PubMed ID: 32012313 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]