These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 38653423)
1. Effects of stand-alone polar residue on membrane protein stability and structure. Chang YC; Cao Z; Chen WT; Huang WC Biochim Biophys Acta Biomembr; 2024 Jun; 1866(5):184325. PubMed ID: 38653423 [TBL] [Abstract][Full Text] [Related]
2. Proline residues in transmembrane alpha helices affect the folding of bacteriorhodopsin. Lu H; Marti T; Booth PJ J Mol Biol; 2001 Apr; 308(2):437-46. PubMed ID: 11327778 [TBL] [Abstract][Full Text] [Related]
3. Reduction of membrane protein hydrophobicity by site-directed mutagenesis: introduction of multiple polar residues in helix D of bacteriorhodopsin. Chen GQ; Gouaux E Protein Eng; 1997 Sep; 10(9):1061-6. PubMed ID: 9464570 [TBL] [Abstract][Full Text] [Related]
4. Role of helix-helix interactions in assembly of the bacteriorhodopsin lattice. Isenbarger TA; Krebs MP Biochemistry; 1999 Jul; 38(28):9023-30. PubMed ID: 10413475 [TBL] [Abstract][Full Text] [Related]
5. Effects of genetic replacements of charged and H-bonding residues in the retinal pocket on Ca2+ binding to deionized bacteriorhodopsin. Zhang YN; el-Sayed MA; Bonet ML; Lanyi JK; Chang M; Ni B; Needleman R Proc Natl Acad Sci U S A; 1993 Feb; 90(4):1445-9. PubMed ID: 8434004 [TBL] [Abstract][Full Text] [Related]
6. Structure and function in bacteriorhodopsin: the role of the interhelical loops in the folding and stability of bacteriorhodopsin. Kim JM; Booth PJ; Allen SJ; Khorana HG J Mol Biol; 2001 Apr; 308(2):409-22. PubMed ID: 11327776 [TBL] [Abstract][Full Text] [Related]
7. Three strategically placed hydrogen-bonding residues convert a proton pump into a sensory receptor. Sudo Y; Spudich JL Proc Natl Acad Sci U S A; 2006 Oct; 103(44):16129-34. PubMed ID: 17050685 [TBL] [Abstract][Full Text] [Related]
8. Cell-free expressed bacteriorhodopsin in different soluble membrane mimetics: biophysical properties and NMR accessibility. Etzkorn M; Raschle T; Hagn F; Gelev V; Rice AJ; Walz T; Wagner G Structure; 2013 Mar; 21(3):394-401. PubMed ID: 23415558 [TBL] [Abstract][Full Text] [Related]
10. Stable folding core in the folding transition state of an alpha-helical integral membrane protein. Curnow P; Di Bartolo ND; Moreton KM; Ajoje OO; Saggese NP; Booth PJ Proc Natl Acad Sci U S A; 2011 Aug; 108(34):14133-8. PubMed ID: 21831834 [TBL] [Abstract][Full Text] [Related]
11. Residue-specific millisecond to microsecond fluctuations in bacteriorhodopsin induced by disrupted or disorganized two-dimensional crystalline lattice, through modified lipid-helix and helix-helix interactions, as revealed by 13C NMR. Saitô H; Tsuchida T; Ogawa K; Arakawa T; Yamaguchi S; Tuzi S Biochim Biophys Acta; 2002 Sep; 1565(1):97-106. PubMed ID: 12225857 [TBL] [Abstract][Full Text] [Related]
12. The effect of loops on the structural organization of alpha-helical membrane proteins. Tastan O; Klein-Seetharaman J; Meirovitch H Biophys J; 2009 Mar; 96(6):2299-312. PubMed ID: 19289056 [TBL] [Abstract][Full Text] [Related]
13. Light-independent phospholipid scramblase activity of bacteriorhodopsin from Halobacterium salinarum. Verchère A; Ou WL; Ploier B; Morizumi T; Goren MA; Bütikofer P; Ernst OP; Khelashvili G; Menon AK Sci Rep; 2017 Aug; 7(1):9522. PubMed ID: 28842688 [TBL] [Abstract][Full Text] [Related]
14. A transporter converted into a sensor, a phototaxis signaling mutant of bacteriorhodopsin at 3.0 Å. Spudich EN; Ozorowski G; Schow EV; Tobias DJ; Spudich JL; Luecke H J Mol Biol; 2012 Jan; 415(3):455-63. PubMed ID: 22123198 [TBL] [Abstract][Full Text] [Related]
15. Polar mutations in membrane proteins as a biophysical basis for disease. Partridge AW; Therien AG; Deber CM Biopolymers; 2002; 66(5):350-8. PubMed ID: 12539263 [TBL] [Abstract][Full Text] [Related]
17. The contribution of a covalently bound cofactor to the folding and thermodynamic stability of an integral membrane protein. Curnow P; Booth PJ J Mol Biol; 2010 Nov; 403(4):630-42. PubMed ID: 20850459 [TBL] [Abstract][Full Text] [Related]
18. Sequence dependence of BNIP3 transmembrane domain dimerization implicates side-chain hydrogen bonding and a tandem GxxxG motif in specific helix-helix interactions. Sulistijo ES; MacKenzie KR J Mol Biol; 2006 Dec; 364(5):974-90. PubMed ID: 17049556 [TBL] [Abstract][Full Text] [Related]
19. Proton transfer via a transient linear water-molecule chain in a membrane protein. Freier E; Wolf S; Gerwert K Proc Natl Acad Sci U S A; 2011 Jul; 108(28):11435-9. PubMed ID: 21709261 [TBL] [Abstract][Full Text] [Related]
20. Modest stabilization by most hydrogen-bonded side-chain interactions in membrane proteins. Joh NH; Min A; Faham S; Whitelegge JP; Yang D; Woods VL; Bowie JU Nature; 2008 Jun; 453(7199):1266-70. PubMed ID: 18500332 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]