BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38653423)

  • 1. Effects of stand-alone polar residue on membrane protein stability and structure.
    Chang YC; Cao Z; Chen WT; Huang WC
    Biochim Biophys Acta Biomembr; 2024 Jun; 1866(5):184325. PubMed ID: 38653423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proline residues in transmembrane alpha helices affect the folding of bacteriorhodopsin.
    Lu H; Marti T; Booth PJ
    J Mol Biol; 2001 Apr; 308(2):437-46. PubMed ID: 11327778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduction of membrane protein hydrophobicity by site-directed mutagenesis: introduction of multiple polar residues in helix D of bacteriorhodopsin.
    Chen GQ; Gouaux E
    Protein Eng; 1997 Sep; 10(9):1061-6. PubMed ID: 9464570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of helix-helix interactions in assembly of the bacteriorhodopsin lattice.
    Isenbarger TA; Krebs MP
    Biochemistry; 1999 Jul; 38(28):9023-30. PubMed ID: 10413475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of genetic replacements of charged and H-bonding residues in the retinal pocket on Ca2+ binding to deionized bacteriorhodopsin.
    Zhang YN; el-Sayed MA; Bonet ML; Lanyi JK; Chang M; Ni B; Needleman R
    Proc Natl Acad Sci U S A; 1993 Feb; 90(4):1445-9. PubMed ID: 8434004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and function in bacteriorhodopsin: the role of the interhelical loops in the folding and stability of bacteriorhodopsin.
    Kim JM; Booth PJ; Allen SJ; Khorana HG
    J Mol Biol; 2001 Apr; 308(2):409-22. PubMed ID: 11327776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three strategically placed hydrogen-bonding residues convert a proton pump into a sensory receptor.
    Sudo Y; Spudich JL
    Proc Natl Acad Sci U S A; 2006 Oct; 103(44):16129-34. PubMed ID: 17050685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell-free expressed bacteriorhodopsin in different soluble membrane mimetics: biophysical properties and NMR accessibility.
    Etzkorn M; Raschle T; Hagn F; Gelev V; Rice AJ; Walz T; Wagner G
    Structure; 2013 Mar; 21(3):394-401. PubMed ID: 23415558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Position-dependence of stabilizing polar interactions of asparagine in transmembrane helical bundles.
    Lear JD; Gratkowski H; Adamian L; Liang J; DeGrado WF
    Biochemistry; 2003 Jun; 42(21):6400-7. PubMed ID: 12767221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stable folding core in the folding transition state of an alpha-helical integral membrane protein.
    Curnow P; Di Bartolo ND; Moreton KM; Ajoje OO; Saggese NP; Booth PJ
    Proc Natl Acad Sci U S A; 2011 Aug; 108(34):14133-8. PubMed ID: 21831834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Residue-specific millisecond to microsecond fluctuations in bacteriorhodopsin induced by disrupted or disorganized two-dimensional crystalline lattice, through modified lipid-helix and helix-helix interactions, as revealed by 13C NMR.
    Saitô H; Tsuchida T; Ogawa K; Arakawa T; Yamaguchi S; Tuzi S
    Biochim Biophys Acta; 2002 Sep; 1565(1):97-106. PubMed ID: 12225857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of loops on the structural organization of alpha-helical membrane proteins.
    Tastan O; Klein-Seetharaman J; Meirovitch H
    Biophys J; 2009 Mar; 96(6):2299-312. PubMed ID: 19289056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light-independent phospholipid scramblase activity of bacteriorhodopsin from Halobacterium salinarum.
    Verchère A; Ou WL; Ploier B; Morizumi T; Goren MA; Bütikofer P; Ernst OP; Khelashvili G; Menon AK
    Sci Rep; 2017 Aug; 7(1):9522. PubMed ID: 28842688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polar mutations in membrane proteins as a biophysical basis for disease.
    Partridge AW; Therien AG; Deber CM
    Biopolymers; 2002; 66(5):350-8. PubMed ID: 12539263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A transporter converted into a sensor, a phototaxis signaling mutant of bacteriorhodopsin at 3.0 Å.
    Spudich EN; Ozorowski G; Schow EV; Tobias DJ; Spudich JL; Luecke H
    J Mol Biol; 2012 Jan; 415(3):455-63. PubMed ID: 22123198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence context strongly modulates association of polar residues in transmembrane helices.
    Dawson JP; Melnyk RA; Deber CM; Engelman DM
    J Mol Biol; 2003 Aug; 331(1):255-62. PubMed ID: 12875850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The contribution of a covalently bound cofactor to the folding and thermodynamic stability of an integral membrane protein.
    Curnow P; Booth PJ
    J Mol Biol; 2010 Nov; 403(4):630-42. PubMed ID: 20850459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequence dependence of BNIP3 transmembrane domain dimerization implicates side-chain hydrogen bonding and a tandem GxxxG motif in specific helix-helix interactions.
    Sulistijo ES; MacKenzie KR
    J Mol Biol; 2006 Dec; 364(5):974-90. PubMed ID: 17049556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proton transfer via a transient linear water-molecule chain in a membrane protein.
    Freier E; Wolf S; Gerwert K
    Proc Natl Acad Sci U S A; 2011 Jul; 108(28):11435-9. PubMed ID: 21709261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modest stabilization by most hydrogen-bonded side-chain interactions in membrane proteins.
    Joh NH; Min A; Faham S; Whitelegge JP; Yang D; Woods VL; Bowie JU
    Nature; 2008 Jun; 453(7199):1266-70. PubMed ID: 18500332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.