These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 38653423)
21. Molecular dynamics simulation of the unfolding of individual bacteriorhodopsin helices in sodium dodecyl sulfate micelles. Krishnamani V; Lanyi JK Biochemistry; 2012 Feb; 51(6):1061-9. PubMed ID: 22304411 [TBL] [Abstract][Full Text] [Related]
22. Shifting hydrogen bonds may produce flexible transmembrane helices. Cao Z; Bowie JU Proc Natl Acad Sci U S A; 2012 May; 109(21):8121-6. PubMed ID: 22566663 [TBL] [Abstract][Full Text] [Related]
23. X-ray diffraction of a cysteine-containing bacteriorhodopsin mutant and its mercury derivative. Localization of an amino acid residue in the loop of an integral membrane protein. Krebs MP; Behrens W; Mollaaghababa R; Khorana HG; Heyn MP Biochemistry; 1993 Nov; 32(47):12830-4. PubMed ID: 8251504 [TBL] [Abstract][Full Text] [Related]
24. Hydrophobic interactions at the Ccap position of the C-capping motif of alpha-helices. Ermolenko DN; Thomas ST; Aurora R; Gronenborn AM; Makhatadze GI J Mol Biol; 2002 Sep; 322(1):123-35. PubMed ID: 12215419 [TBL] [Abstract][Full Text] [Related]
25. Unfolding pathways of individual bacteriorhodopsins. Oesterhelt F; Oesterhelt D; Pfeiffer M; Engel A; Gaub HE; Müller DJ Science; 2000 Apr; 288(5463):143-6. PubMed ID: 10753119 [TBL] [Abstract][Full Text] [Related]
26. Polar residues in membrane domains of proteins: molecular basis for helix-helix association in a mutant CFTR transmembrane segment. Partridge AW; Melnyk RA; Deber CM Biochemistry; 2002 Mar; 41(11):3647-53. PubMed ID: 11888281 [TBL] [Abstract][Full Text] [Related]
27. Early photocycle structural changes in a bacteriorhodopsin mutant engineered to transmit photosensory signals. Sudo Y; Furutani Y; Spudich JL; Kandori H J Biol Chem; 2007 May; 282(21):15550-8. PubMed ID: 17387174 [TBL] [Abstract][Full Text] [Related]
28. Halide binding by the D212N mutant of Bacteriorhodopsin affects hydrogen bonding of water in the active site. Shibata M; Yoshitsugu M; Mizuide N; Ihara K; Kandori H Biochemistry; 2007 Jun; 46(25):7525-35. PubMed ID: 17547422 [TBL] [Abstract][Full Text] [Related]
29. Helix-helix packing and interfacial pairwise interactions of residues in membrane proteins. Adamian L; Liang J J Mol Biol; 2001 Aug; 311(4):891-907. PubMed ID: 11518538 [TBL] [Abstract][Full Text] [Related]
30. Kinetic folding mechanism of an integral membrane protein examined by pulsed oxidative labeling and mass spectrometry. Pan Y; Brown L; Konermann L J Mol Biol; 2011 Jul; 410(1):146-58. PubMed ID: 21570983 [TBL] [Abstract][Full Text] [Related]
31. X-ray structure analysis of bacteriorhodopsin at 1.3 Å resolution. Hasegawa N; Jonotsuka H; Miki K; Takeda K Sci Rep; 2018 Sep; 8(1):13123. PubMed ID: 30177765 [TBL] [Abstract][Full Text] [Related]
32. Hydrophobic organization of alpha-helix membrane bundle in bacteriorhodopsin. Efremov RG; Vergoten G J Protein Chem; 1996 Jan; 15(1):63-76. PubMed ID: 8838591 [TBL] [Abstract][Full Text] [Related]
33. Characterizing molecular interactions in different bacteriorhodopsin assemblies by single-molecule force spectroscopy. Sapra KT; Besir H; Oesterhelt D; Muller DJ J Mol Biol; 2006 Jan; 355(4):640-50. PubMed ID: 16330046 [TBL] [Abstract][Full Text] [Related]
34. Surface dynamics of bacteriorhodopsin as revealed by (13)C NMR studies on [(13)C]Ala-labeled proteins: detection of millisecond or microsecond motions in interhelical loops and C-terminal alpha-helix. Yamaguchi S; Tuzi S; Yonebayashi K; Naito A; Needleman R; Lanyi JK; Saitô H J Biochem; 2001 Mar; 129(3):373-82. PubMed ID: 11226876 [TBL] [Abstract][Full Text] [Related]
35. Suppressor mutation analysis of the sensory rhodopsin I-transducer complex: insights into the color-sensing mechanism. Jung KH; Spudich JL J Bacteriol; 1998 Apr; 180(8):2033-42. PubMed ID: 9555883 [TBL] [Abstract][Full Text] [Related]
36. Positions of polar amino acids alter interactions between transmembrane segments and detergents. Tulumello DV; Deber CM Biochemistry; 2011 May; 50(19):3928-35. PubMed ID: 21473646 [TBL] [Abstract][Full Text] [Related]
37. The proton transfers in the cytoplasmic domain of bacteriorhodopsin are facilitated by a cluster of interacting residues. Brown LS; Yamazaki Y; Maeda A; Sun L; Needleman R; Lanyi JK J Mol Biol; 1994 Jun; 239(3):401-14. PubMed ID: 8201621 [TBL] [Abstract][Full Text] [Related]
38. Structure and function in bacteriorhodopsin: the effect of the interhelical loops on the protein folding kinetics. Allen SJ; Kim JM; Khorana HG; Lu H; Booth PJ J Mol Biol; 2001 Apr; 308(2):423-35. PubMed ID: 11327777 [TBL] [Abstract][Full Text] [Related]
40. In silico and experimental improvement of bacteriorhodopsin production in Halobacterium salinarum R1 by increasing DNA-binding affinity of Bat through Q661R/Q665R substitutions in HTH motif. Mirfeizollahi A; Yakhchali B; Deldar AA; Karkhane AA Extremophiles; 2019 Jan; 23(1):59-67. PubMed ID: 30350225 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]