These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 38653490)

  • 21. Scuba: scalable kernel-based gene prioritization.
    Zampieri G; Tran DV; Donini M; Navarin N; Aiolli F; Sperduti A; Valle G
    BMC Bioinformatics; 2018 Jan; 19(1):23. PubMed ID: 29370760
    [TBL] [Abstract][Full Text] [Related]  

  • 22. bNEAT: a Bayesian network method for detecting epistatic interactions in genome-wide association studies.
    Han B; Chen XW
    BMC Genomics; 2011; 12 Suppl 2(Suppl 2):S9. PubMed ID: 21989368
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Associating Multivariate Traits with Genetic Variants Using Collapsing and Kernel Methods with Pedigree- or Population-Based Studies.
    Chien LC
    Comput Math Methods Med; 2021; 2021():8812282. PubMed ID: 33628328
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A scalable, knowledge-based analysis framework for genetic association studies.
    Baurley JW; Conti DV
    BMC Bioinformatics; 2013 Oct; 14():312. PubMed ID: 24152222
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Powerful and Adaptive Testing for Multi-trait and Multi-SNP Associations with GWAS and Sequencing Data.
    Kim J; Zhang Y; Pan W;
    Genetics; 2016 Jun; 203(2):715-31. PubMed ID: 27075728
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improving SNP prioritization and pleiotropic architecture estimation by incorporating prior knowledge using graph-GPA.
    Kim HJ; Yu Z; Lawson A; Zhao H; Chung D
    Bioinformatics; 2018 Jun; 34(12):2139-2141. PubMed ID: 29432514
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Novel Detection Method for High-Order SNP Epistatic Interactions Based on Explicit-Encoding-Based Multitasking Harmony Search.
    Tuo S; Jiang J
    Interdiscip Sci; 2024 Sep; 16(3):688-711. PubMed ID: 38954231
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiple SNP Set Analysis for Genome-Wide Association Studies Through Bayesian Latent Variable Selection.
    Lu ZH; Zhu H; Knickmeyer RC; Sullivan PF; Williams SN; Zou F;
    Genet Epidemiol; 2015 Dec; 39(8):664-77. PubMed ID: 26515609
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kernel-imbedded Gaussian processes for disease classification using microarray gene expression data.
    Zhao X; Cheung LW
    BMC Bioinformatics; 2007 Feb; 8():67. PubMed ID: 17328811
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Translating genome wide association study results to associations among common diseases: in silico study with an electronic medical record.
    Anand V; Rosenman MB; Downs SM
    Int J Med Inform; 2013 Sep; 82(9):864-74. PubMed ID: 23743324
    [TBL] [Abstract][Full Text] [Related]  

  • 31. KDSNP: A kernel-based approach to detecting high-order SNP interactions.
    Kodama K; Saigo H
    J Bioinform Comput Biol; 2016 Oct; 14(5):1644003. PubMed ID: 27806683
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Current status of SNPs interaction in genome-wide association study].
    Li FG; Wang ZP; Hu G; Li H
    Yi Chuan; 2011 Sep; 33(9):901-10. PubMed ID: 21951789
    [TBL] [Abstract][Full Text] [Related]  

  • 33. New Algorithm and Software (BNOmics) for Inferring and Visualizing Bayesian Networks from Heterogeneous Big Biological and Genetic Data.
    Gogoshin G; Boerwinkle E; Rodin AS
    J Comput Biol; 2017 Apr; 24(4):340-356. PubMed ID: 27681505
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Covariate-modulated local false discovery rate for genome-wide association studies.
    Zablocki RW; Schork AJ; Levine RA; Andreassen OA; Dale AM; Thompson WK
    Bioinformatics; 2014 Aug; 30(15):2098-104. PubMed ID: 24711653
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A hidden two-locus disease association pattern in genome-wide association studies.
    Yang C; Wan X; Yang Q; Xue H; Tang NL; Yu W
    BMC Bioinformatics; 2011 May; 12():156. PubMed ID: 21569557
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Part 1. Statistical Learning Methods for the Effects of Multiple Air Pollution Constituents.
    Coull BA; Bobb JF; Wellenius GA; Kioumourtzoglou MA; Mittleman MA; Koutrakis P; Godleski JJ
    Res Rep Health Eff Inst; 2015 Jun; (183 Pt 1-2):5-50. PubMed ID: 26333238
    [TBL] [Abstract][Full Text] [Related]  

  • 37. SMMB: a stochastic Markov blanket framework strategy for epistasis detection in GWAS.
    Niel C; Sinoquet C; Dina C; Rocheleau G
    Bioinformatics; 2018 Aug; 34(16):2773-2780. PubMed ID: 29547902
    [TBL] [Abstract][Full Text] [Related]  

  • 38. parSMURF, a high-performance computing tool for the genome-wide detection of pathogenic variants.
    Petrini A; Mesiti M; Schubach M; Frasca M; Danis D; Re M; Grossi G; Cappelletti L; Castrignanò T; Robinson PN; Valentini G
    Gigascience; 2020 May; 9(5):. PubMed ID: 32444882
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pathway-Based Kernel Boosting for the Analysis of Genome-Wide Association Studies.
    Friedrichs S; Manitz J; Burger P; Amos CI; Risch A; Chang-Claude J; Wichmann HE; Kneib T; Bickeböller H; Hofner B
    Comput Math Methods Med; 2017; 2017():6742763. PubMed ID: 28785300
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Greater power and computational efficiency for kernel-based association testing of sets of genetic variants.
    Lippert C; Xiang J; Horta D; Widmer C; Kadie C; Heckerman D; Listgarten J
    Bioinformatics; 2014 Nov; 30(22):3206-14. PubMed ID: 25075117
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.