These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 38653567)
1. Diffusion- and Perfusion-Weighted MRI Radiomics for Survival Prediction in Patients with Lower-Grade Gliomas. Park CJ; Kim S; Han K; Ahn SS; Kim D; Park YW; Chang JH; Kim SH; Lee SK Yonsei Med J; 2024 May; 65(5):283-292. PubMed ID: 38653567 [TBL] [Abstract][Full Text] [Related]
2. Radiomics risk score may be a potential imaging biomarker for predicting survival in isocitrate dehydrogenase wild-type lower-grade gliomas. Park CJ; Han K; Kim H; Ahn SS; Choi YS; Park YW; Chang JH; Kim SH; Jain R; Lee SK Eur Radiol; 2020 Dec; 30(12):6464-6474. PubMed ID: 32740813 [TBL] [Abstract][Full Text] [Related]
3. Diffusion- and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma. Kim M; Jung SY; Park JE; Jo Y; Park SY; Nam SJ; Kim JH; Kim HS Eur Radiol; 2020 Apr; 30(4):2142-2151. PubMed ID: 31828414 [TBL] [Abstract][Full Text] [Related]
4. Adding radiomics to the 2021 WHO updates may improve prognostic prediction for current IDH-wildtype histological lower-grade gliomas with known EGFR amplification and TERT promoter mutation status. Park YW; Kim S; Park CJ; Ahn SS; Han K; Kang SG; Chang JH; Kim SH; Lee SK Eur Radiol; 2022 Dec; 32(12):8089-8098. PubMed ID: 35763095 [TBL] [Abstract][Full Text] [Related]
5. Radiomics Nomogram Building From Multiparametric MRI to Predict Grade in Patients With Glioma: A Cohort Study. Wang Q; Li Q; Mi R; Ye H; Zhang H; Chen B; Li Y; Huang G; Xia J J Magn Reson Imaging; 2019 Mar; 49(3):825-833. PubMed ID: 30260592 [TBL] [Abstract][Full Text] [Related]
6. Glioma grading prediction using multiparametric magnetic resonance imaging-based radiomics combined with proton magnetic resonance spectroscopy and diffusion tensor imaging. Lin K; Cidan W; Qi Y; Wang X Med Phys; 2022 Jul; 49(7):4419-4429. PubMed ID: 35366379 [TBL] [Abstract][Full Text] [Related]
7. Radiomics-Based Machine Learning Classification for Glioma Grading Using Diffusion- and Perfusion-Weighted Magnetic Resonance Imaging. Hashido T; Saito S; Ishida T J Comput Assist Tomogr; 2021 Jul-Aug 01; 45(4):606-613. PubMed ID: 34270479 [TBL] [Abstract][Full Text] [Related]
8. Predicting histological grade in pediatric glioma using multiparametric radiomics and conventional MRI features. Zhou T; Qiao B; Peng B; Liu Y; Gong Z; Kang M; He Y; Pang C; Dai Y; Sheng M Sci Rep; 2024 Jun; 14(1):13683. PubMed ID: 38871755 [TBL] [Abstract][Full Text] [Related]
9. Improving survival prediction of high-grade glioma via machine learning techniques based on MRI radiomic, genetic and clinical risk factors. Tan Y; Mu W; Wang XC; Yang GQ; Gillies RJ; Zhang H Eur J Radiol; 2019 Nov; 120():108609. PubMed ID: 31606714 [TBL] [Abstract][Full Text] [Related]
10. A radiomics nomogram may improve the prediction of IDH genotype for astrocytoma before surgery. Tan Y; Zhang ST; Wei JW; Dong D; Wang XC; Yang GQ; Tian J; Zhang H Eur Radiol; 2019 Jul; 29(7):3325-3337. PubMed ID: 30972543 [TBL] [Abstract][Full Text] [Related]
11. Diffusion tensor imaging radiomics in lower-grade glioma: improving subtyping of isocitrate dehydrogenase mutation status. Park CJ; Choi YS; Park YW; Ahn SS; Kang SG; Chang JH; Kim SH; Lee SK Neuroradiology; 2020 Mar; 62(3):319-326. PubMed ID: 31820065 [TBL] [Abstract][Full Text] [Related]
12. Noninvasive prediction of IDH mutation status in gliomas using preoperative multiparametric MRI radiomics nomogram: A mutlicenter study. Lu J; Xu W; Chen X; Wang T; Li H Magn Reson Imaging; 2023 Dec; 104():72-79. PubMed ID: 37778708 [TBL] [Abstract][Full Text] [Related]
13. Multimodal MRI-based radiomic nomogram for predicting telomerase reverse transcriptase promoter mutation in IDH-wildtype histological lower-grade gliomas. Huo X; Wang Y; Ma S; Zhu S; Wang K; Ji Q; Chen F; Wang L; Wu Z; Li W Medicine (Baltimore); 2023 Dec; 102(51):e36581. PubMed ID: 38134061 [TBL] [Abstract][Full Text] [Related]
14. BTK Expression Level Prediction and the High-Grade Glioma Prognosis Using Radiomic Machine Learning Models. Jiang C; Sun C; Wang X; Ma S; Jia W; Zhang D J Imaging Inform Med; 2024 Aug; 37(4):1359-1374. PubMed ID: 38381384 [TBL] [Abstract][Full Text] [Related]
15. Diffusion-weighted imaging and arterial spin labeling radiomics features may improve differentiation between radiation-induced brain injury and glioma recurrence. Zhang J; Wu Y; Wang Y; Zhang X; Lei Y; Zhu G; Mao C; Zhang L; Ma L Eur Radiol; 2023 May; 33(5):3332-3342. PubMed ID: 36576544 [TBL] [Abstract][Full Text] [Related]
16. Machine learning and radiomic phenotyping of lower grade gliomas: improving survival prediction. Choi YS; Ahn SS; Chang JH; Kang SG; Kim EH; Kim SH; Jain R; Lee SK Eur Radiol; 2020 Jul; 30(7):3834-3842. PubMed ID: 32162004 [TBL] [Abstract][Full Text] [Related]
17. Non-invasive genotype prediction of chromosome 1p/19q co-deletion by development and validation of an MRI-based radiomics signature in lower-grade gliomas. Han Y; Xie Z; Zang Y; Zhang S; Gu D; Zhou M; Gevaert O; Wei J; Li C; Chen H; Du J; Liu Z; Dong D; Tian J; Zhou D J Neurooncol; 2018 Nov; 140(2):297-306. PubMed ID: 30097822 [TBL] [Abstract][Full Text] [Related]
18. Amide proton transfer weighted and diffusion weighted imaging based radiomics classification algorithm for predicting 1p/19q co-deletion status in low grade gliomas. Ma A; Yan X; Qu Y; Wen H; Zou X; Liu X; Lu M; Mo J; Wen Z BMC Med Imaging; 2024 Apr; 24(1):85. PubMed ID: 38600452 [TBL] [Abstract][Full Text] [Related]
19. A radiomic signature as a non-invasive predictor of progression-free survival in patients with lower-grade gliomas. Liu X; Li Y; Qian Z; Sun Z; Xu K; Wang K; Liu S; Fan X; Li S; Zhang Z; Jiang T; Wang Y Neuroimage Clin; 2018; 20():1070-1077. PubMed ID: 30366279 [TBL] [Abstract][Full Text] [Related]
20. Differentiation of high-grade from low-grade diffuse gliomas using diffusion-weighted imaging: a comparative study of mono-, bi-, and stretched-exponential diffusion models. Kusunoki M; Kikuchi K; Togao O; Yamashita K; Momosaka D; Kikuchi Y; Kuga D; Hata N; Mizoguchi M; Iihara K; Suzuki SO; Iwaki T; Akamine Y; Hiwatashi A Neuroradiology; 2020 Jul; 62(7):815-823. PubMed ID: 32424712 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]