These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38653787)

  • 1. SM-CycleGAN: crop image data enhancement method based on self-attention mechanism CycleGAN.
    Liu D; Cao Y; Yang J; Wei J; Zhang J; Rao C; Wu B; Zhang D
    Sci Rep; 2024 Apr; 14(1):9277. PubMed ID: 38653787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of Conventional
    Choi HJ; Seo M; Kim A; Park SH
    Medicina (Kaunas); 2023 Jul; 59(7):. PubMed ID: 37512092
    [No Abstract]   [Full Text] [Related]  

  • 3. Image Translation by Ad CycleGAN for COVID-19 X-Ray Images: A New Approach for Controllable GAN.
    Liang Z; Huang JX; Antani S
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36559994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Method based on Evolutionary Algorithms and Channel Attention Mechanism to Enhance Cycle Generative Adversarial Network Performance for Image Translation.
    Xue Y; Zhang Y; Neri F
    Int J Neural Syst; 2023 May; 33(5):2350026. PubMed ID: 37016799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of megavoltage computed tomography image quality for adaptive helical tomotherapy using cycleGAN-based image synthesis with small datasets.
    Lee D; Jeong SW; Kim SJ; Cho H; Park W; Han Y
    Med Phys; 2021 Oct; 48(10):5593-5610. PubMed ID: 34418109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging Study of Pseudo-CT Synthesized From Cone-Beam CT Based on 3D CycleGAN in Radiotherapy.
    Sun H; Fan R; Li C; Lu Z; Xie K; Ni X; Yang J
    Front Oncol; 2021; 11():603844. PubMed ID: 33777746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Attention-Aware Discrimination for MR-to-CT Image Translation Using Cycle-Consistent Generative Adversarial Networks.
    Kearney V; Ziemer BP; Perry A; Wang T; Chan JW; Ma L; Morin O; Yom SS; Solberg TD
    Radiol Artif Intell; 2020 Mar; 2(2):e190027. PubMed ID: 33937817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unpaired Low-Dose CT Denoising Network Based on Cycle-Consistent Generative Adversarial Network with Prior Image Information.
    Tang C; Li J; Wang L; Li Z; Jiang L; Cai A; Zhang W; Liang N; Li L; Yan B
    Comput Math Methods Med; 2019; 2019():8639825. PubMed ID: 31885686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visual resource extraction and artistic communication model design based on improved CycleGAN algorithm.
    Yang A; Kashif Hanif M
    PeerJ Comput Sci; 2024; 10():e1889. PubMed ID: 38660158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generating Defective Epoxy Drop Images for Die Attachment in Integrated Circuit Manufacturing via Enhanced Loss Function CycleGAN.
    Alam L; Kehtarnavaz N
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Double U-Net CycleGAN for 3D MR to CT image synthesis.
    Sun B; Jia S; Jiang X; Jia F
    Int J Comput Assist Radiol Surg; 2023 Jan; 18(1):149-156. PubMed ID: 35984606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A qualitative study of improving megavoltage computed tomography image quality and maintaining dose accuracy using cycleGAN-based image synthesis.
    Lv T; Xie C; Zhang Y; Liu Y; Zhang G; Qu B; Zhao W; Xu S
    Med Phys; 2024 Jan; 51(1):394-406. PubMed ID: 37475544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NG-GAN: A Robust Noise-Generation Generative Adversarial Network for Generating Old-Image Noise.
    Hossain S; Lee B
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Research on obtaining pseudo CT images based on stacked generative adversarial network.
    Sun H; Lu Z; Fan R; Xiong W; Xie K; Ni X; Yang J
    Quant Imaging Med Surg; 2021 May; 11(5):1983-2000. PubMed ID: 33936980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The synthesis of high-energy CT images from low-energy CT images using an improved cycle generative adversarial network.
    Zhou H; Liu X; Wang H; Chen Q; Wang R; Pang ZF; Zhang Y; Hu Z
    Quant Imaging Med Surg; 2022 Jan; 12(1):28-42. PubMed ID: 34993058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Channel-wise attention enhanced and structural similarity constrained cycleGAN for effective synthetic CT generation from head and neck MRI images.
    Gong C; Huang Y; Luo M; Cao S; Gong X; Ding S; Yuan X; Zheng W; Zhang Y
    Radiat Oncol; 2024 Mar; 19(1):37. PubMed ID: 38486193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probabilistic self-learning framework for low-dose CT denoising.
    Bai T; Wang B; Nguyen D; Jiang S
    Med Phys; 2021 May; 48(5):2258-2270. PubMed ID: 33621348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. C
    Zhang Z; Li Y; Shin BS
    Med Phys; 2022 Oct; 49(10):6491-6504. PubMed ID: 35981348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of an unsupervised cycle contrastive unpaired translation network for MRI-to-CT synthesis.
    Wang J; Yan B; Wu X; Jiang X; Zuo Y; Yang Y
    J Appl Clin Med Phys; 2022 Nov; 23(11):e13775. PubMed ID: 36168935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasound image denoising using generative adversarial networks with residual dense connectivity and weighted joint loss.
    Zhang L; Zhang J
    PeerJ Comput Sci; 2022; 8():e873. PubMed ID: 35494868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.