These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 38653978)

  • 1. Gradient-induced long-range optical pulling force based on photonic band gap.
    Lu W; Krasavin AV; Lan S; Zayats AV; Dai Q
    Light Sci Appl; 2024 Apr; 13(1):93. PubMed ID: 38653978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical Pulling Using Chiral Metalens as a Photonic Probe.
    Peng M; Luo H; Zhang Z; Kuang T; Chen D; Bai W; Chen Z; Yang J; Xiao G
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Induced Backaction Optical Pulling Force.
    Zhu T; Cao Y; Wang L; Nie Z; Cao T; Sun F; Jiang Z; Nieto-Vesperinas M; Liu Y; Qiu CW; Ding W
    Phys Rev Lett; 2018 Mar; 120(12):123901. PubMed ID: 29694063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical pulling and pushing forces exerted on silicon nanospheres with strong coherent interaction between electric and magnetic resonances.
    Liu H; Panmai M; Peng Y; Lan S
    Opt Express; 2017 May; 25(11):12357-12371. PubMed ID: 28786592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical pulling using evanescent mode in sub-wavelength channels.
    Zhu T; Mahdy MR; Cao Y; Lv H; Sun F; Jiang Z; Ding W
    Opt Express; 2016 Aug; 24(16):18436-44. PubMed ID: 27505807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical pulling and pushing forces via Bloch surface waves.
    Kostina N; Petrov M; Bobrovs V; Shalin AS
    Opt Lett; 2022 Sep; 47(18):4592-4595. PubMed ID: 36107040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Matter-Wave Tractor Beams.
    Gorlach AA; Gorlach MA; Lavrinenko AV; Novitsky A
    Phys Rev Lett; 2017 May; 118(18):180401. PubMed ID: 28524676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Momentum-Topology-Induced Optical Pulling Force.
    Li H; Cao Y; Shi B; Zhu T; Geng Y; Feng R; Wang L; Sun F; Shi Y; Miri MA; Nieto-Vesperinas M; Qiu CW; Ding W
    Phys Rev Lett; 2020 Apr; 124(14):143901. PubMed ID: 32338962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gaining control on optical force by the stimulated-emission resonance effect.
    Kudo T; Louis B; Sotome H; Chen JK; Ito S; Miyasaka H; Masuhara H; Hofkens J; BresolĂ­-Obach R
    Chem Sci; 2023 Sep; 14(37):10087-10095. PubMed ID: 37772121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical Pulling Forces Enabled by Hyperbolic Metamaterials.
    Jin R; Xu Y; Dong ZG; Liu Y
    Nano Lett; 2021 Dec; 21(24):10431-10437. PubMed ID: 34898220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Material-independent and size-independent tractor beams for dipole objects.
    Novitsky A; Qiu CW; Lavrinenko A
    Phys Rev Lett; 2012 Jul; 109(2):023902. PubMed ID: 23030161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Giant terahertz pulling force within an evanescent field induced by asymmetric wave coupling into radiative and bound modes.
    Ferrari H; Zapata-RodrĂ­guez CJ; Cuevas M
    Opt Lett; 2022 Sep; 47(17):4500-4503. PubMed ID: 36048689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Macroscopic laser pulling based on the Knudsen force in rarefied gas.
    Wang L; Wang S; Zhao Q; Wang X
    Opt Express; 2023 Jan; 31(2):2665-2674. PubMed ID: 36785275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-distance optical pulling of nanoparticle in a low index cavity using a single plane wave.
    Lee E; Luo T
    Sci Adv; 2020 May; 6(21):eaaz3646. PubMed ID: 32671206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical pulling force on dielectric particles via metallic slab surface plasmon excitation: a comparison between transmission and reflection schemes.
    Ferrari H; Herrero V; Cuevas M
    Opt Lett; 2023 May; 48(9):2345-2348. PubMed ID: 37126270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ballistic supercavitating nanoparticles driven by single Gaussian beam optical pushing and pulling forces.
    Lee E; Huang D; Luo T
    Nat Commun; 2020 May; 11(1):2404. PubMed ID: 32415076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tailoring optical pulling force on gain coated nanoparticles with nonlocal effective medium theory.
    Bian X; Gao DL; Gao L
    Opt Express; 2017 Oct; 25(20):24566-24578. PubMed ID: 29041401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation.
    Simmons CS; Knouf EC; Tewari M; Lin LY
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21988841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of nanoslotted photonic crystal waveguide cavities for single nanoparticle trapping and detection.
    Lin S; Hu J; Kimerling L; Crozier K
    Opt Lett; 2009 Nov; 34(21):3451-3. PubMed ID: 19881624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resonance optical manipulation of nano-objects based on nonlinear optical response.
    Kudo T; Ishihara H
    Phys Chem Chem Phys; 2013 Sep; 15(35):14595-610. PubMed ID: 23907601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.