BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 38654008)

  • 1. Frequency-dependent dynamics of steady-state visual evoked potentials under sustained flicker stimulation.
    Łabęcki M; Nowicka MM; Wróbel A; Suffczynski P
    Sci Rep; 2024 Apr; 14(1):9281. PubMed ID: 38654008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating the feasibility of the steady-state visual evoked potential (SSVEP) to study temporal attention.
    Mora-Cortes A; Ridderinkhof KR; Cohen MX
    Psychophysiology; 2018 May; 55(5):e13029. PubMed ID: 29119621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of stimulation frequency and stimulation waveform on steady-state visual evoked potentials using a computer monitor.
    Chen X; Wang Y; Zhang S; Xu S; Gao X
    J Neural Eng; 2019 Oct; 16(6):066007. PubMed ID: 31220820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of high-frequency visual stimuli above the critical flicker frequency in a SSVEP-based BMI.
    Sakurada T; Kawase T; Komatsu T; Kansaku K
    Clin Neurophysiol; 2015 Oct; 126(10):1972-8. PubMed ID: 25577407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of higher frequency on the classification of steady-state visual evoked potentials.
    Won DO; Hwang HJ; Dähne S; Müller KR; Lee SW
    J Neural Eng; 2016 Feb; 13(1):016014. PubMed ID: 26695712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An amplitude-modulated visual stimulation for reducing eye fatigue in SSVEP-based brain-computer interfaces.
    Chang MH; Baek HJ; Lee SM; Park KS
    Clin Neurophysiol; 2014 Jul; 125(7):1380-91. PubMed ID: 24368034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decoding emotion from high-frequency steady state visual evoked potential (SSVEP).
    Nie L; Ku Y
    J Neurosci Methods; 2023 Jul; 395():109919. PubMed ID: 37422072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Competitive effects on steady-state visual evoked potentials with frequencies in- and outside the α band.
    Keitel C; Andersen SK; Müller MM
    Exp Brain Res; 2010 Sep; 205(4):489-95. PubMed ID: 20711565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural dynamics during repetitive visual stimulation.
    Tsoneva T; Garcia-Molina G; Desain P
    J Neural Eng; 2015 Dec; 12(6):066017. PubMed ID: 26479469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal Modulation of Steady-State Visual Evoked Potentials.
    Labecki M; Nowicka MM; Suffczynski P
    Int J Neural Syst; 2019 Apr; 29(3):1850050. PubMed ID: 30587045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly Interactive Brain-Computer Interface Based on Flicker-Free Steady-State Motion Visual Evoked Potential.
    Han C; Xu G; Xie J; Chen C; Zhang S
    Sci Rep; 2018 Apr; 8(1):5835. PubMed ID: 29643430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency-modulated steady-state visual evoked potentials: a new stimulation method for brain-computer interfaces.
    Dreyer AM; Herrmann CS
    J Neurosci Methods; 2015 Feb; 241():1-9. PubMed ID: 25522824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward binary brain computer interface using steady-state visually evoked potential under eyes closed condition.
    Nishifuji S
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2232-5. PubMed ID: 24110167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous EEG/fMRI analysis of the resonance phenomena in steady-state visual evoked responses.
    Bayram A; Bayraktaroglu Z; Karahan E; Erdogan B; Bilgic B; Ozker M; Kasikci I; Duru AD; Ademoglu A; Oztürk C; Arikan K; Tarhan N; Demiralp T
    Clin EEG Neurosci; 2011 Apr; 42(2):98-106. PubMed ID: 21675599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A multi-day and multi-band dataset for a steady-state visual-evoked potential-based brain-computer interface.
    Choi GY; Han CH; Jung YJ; Hwang HJ
    Gigascience; 2019 Nov; 8(11):. PubMed ID: 31765472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of steady-state visual and somatosensory evoked potentials for brain-computer interface control.
    Smith DJ; Varghese LA; Stepp CE; Guenther FH
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1234-7. PubMed ID: 25570188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SSVEP-based brain-computer interfaces using FSK-modulated visual stimuli.
    Kimura Y; Tanaka T; Higashi H; Morikawa N
    IEEE Trans Biomed Eng; 2013 Oct; 60(10):2831-8. PubMed ID: 23739780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new grid stimulus with subtle flicker perception for user-friendly SSVEP-based BCIs.
    Ming G; Zhong H; Pei W; Gao X; Wang Y
    J Neural Eng; 2023 Mar; 20(2):. PubMed ID: 36827704
    [No Abstract]   [Full Text] [Related]  

  • 19. Utilizing Retinotopic Mapping for a Multi-Target SSVEP BCI With a Single Flicker Frequency.
    Maye A; Zhang D; Engel AK
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):1026-1036. PubMed ID: 28459691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local Interactions between Steady-State Visually Evoked Potentials at Nearby Flickering Frequencies.
    Liza K; Ray S
    J Neurosci; 2022 May; 42(19):3965-3974. PubMed ID: 35396325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.