These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 38654008)

  • 21. Attentional modulation of SSVEP power depends on the network tagged by the flicker frequency.
    Ding J; Sperling G; Srinivasan R
    Cereb Cortex; 2006 Jul; 16(7):1016-29. PubMed ID: 16221931
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impact of mental focus on steady-state visually evoked potential under eyes closed condition for binary brain computer interface.
    Nishifuji S; Kuroda T
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1765-8. PubMed ID: 23366252
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exploiting individual primary visual cortex geometry to boost steady state visual evoked potentials.
    Vanegas MI; Blangero A; Kelly SP
    J Neural Eng; 2013 Jun; 10(3):036003. PubMed ID: 23548662
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimizing spatial properties of a new checkerboard-like visual stimulus for user-friendly SSVEP-based BCIs.
    Ming G; Pei W; Chen H; Gao X; Wang Y
    J Neural Eng; 2021 Oct; 18(5):. PubMed ID: 34544060
    [No Abstract]   [Full Text] [Related]  

  • 25. An SSVEP-based BCI using high duty-cycle visual flicker.
    Lee PL; Yeh CL; Cheng JY; Yang CY; Lan GY
    IEEE Trans Biomed Eng; 2011 Dec; 58(12):3350-9. PubMed ID: 21788179
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials.
    Li R; Zhang X; Li H; Zhang L; Lu Z; Chen J
    Brain Res; 2018 Aug; 1692():142-153. PubMed ID: 29777674
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Periodic component analysis as a spatial filter for SSVEP-based brain-computer interface.
    Kiran Kumar GR; Ramasubba Reddy M
    J Neurosci Methods; 2018 Sep; 307():164-174. PubMed ID: 29890196
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Steady-State Visual Evoked Potential-Based Brain-Computer Interface Using a Novel Visual Stimulus with Quick Response (QR) Code Pattern.
    Siribunyaphat N; Punsawad Y
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214341
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Square or sine: finding a waveform with high success rate of eliciting SSVEP.
    Teng F; Chen Y; Choong AM; Gustafson S; Reichley C; Lawhead P; Waddell D
    Comput Intell Neurosci; 2011; 2011():364385. PubMed ID: 21941529
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exploration of User's Mental State Changes during Performing Brain-Computer Interface.
    Ko LW; Chikara RK; Lee YC; Lin WC
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32503162
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Steady-State Motion Visual Evoked Potential (SSMVEP) Based on Equal Luminance Colored Enhancement.
    Yan W; Xu G; Li M; Xie J; Han C; Zhang S; Luo A; Chen C
    PLoS One; 2017; 12(1):e0169642. PubMed ID: 28060906
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exploring the temporal dynamics of sustained and transient spatial attention using steady-state visual evoked potentials.
    Zhang D; Hong B; Gao S; Röder B
    Exp Brain Res; 2017 May; 235(5):1575-1591. PubMed ID: 28258437
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Steady-state visual evoked potentials reveal enhanced neural responses to illusory surfaces during a concurrent visual attention task.
    Wittenhagen L; Mattingley JB
    Cortex; 2019 Aug; 117():217-227. PubMed ID: 30999213
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Toward a hybrid brain-computer interface based on repetitive visual stimuli with missing events.
    Wu Y; Li M; Wang J
    J Neuroeng Rehabil; 2016 Jul; 13(1):66. PubMed ID: 27460070
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Brain stimulation with 40 Hz heterochromatic flicker extended beyond red, green, and blue.
    Henney MA; Carstensen M; Thorning-Schmidt M; Kubińska M; Grønberg MG; Nguyen M; Madsen KH; Clemmensen LKH; Petersen PM
    Sci Rep; 2024 Jan; 14(1):2147. PubMed ID: 38273009
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Eliciting dual-frequency SSVEP using a hybrid SSVEP-P300 BCI.
    Chang MH; Lee JS; Heo J; Park KS
    J Neurosci Methods; 2016 Jan; 258():104-13. PubMed ID: 26561770
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimization of Checkerboard Spatial Frequencies for Steady-State Visual Evoked Potential Brain-Computer Interfaces.
    Waytowich NR; Yamani Y; Krusienski DJ
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):557-565. PubMed ID: 27542113
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A new dual-frequency stimulation method to increase the number of visual stimuli for multi-class SSVEP-based brain-computer interface (BCI).
    Hwang HJ; Hwan Kim D; Han CH; Im CH
    Brain Res; 2013 Jun; 1515():66-77. PubMed ID: 23587933
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Compact convolutional neural networks for classification of asynchronous steady-state visual evoked potentials.
    Waytowich N; Lawhern VJ; Garcia JO; Cummings J; Faller J; Sajda P; Vettel JM
    J Neural Eng; 2018 Dec; 15(6):066031. PubMed ID: 30279309
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Visual Evoked Response Modulation Occurs in a Complementary Manner Under Dynamic Circuit Framework.
    Yang Z; Guo D; Zhang Y; Wu S; Yao D
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2005-2014. PubMed ID: 31536006
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.