Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38654162)

  • 1. Imaging segmentation mechanism for rectal tumors using improved U-Net.
    Zhang K; Yang X; Cui Y; Zhao J; Li D
    BMC Med Imaging; 2024 Apr; 24(1):95. PubMed ID: 38654162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved U-Net based on contour prediction for efficient segmentation of rectal cancer.
    Li D; Chu X; Cui Y; Zhao J; Zhang K; Yang X
    Comput Methods Programs Biomed; 2022 Jan; 213():106493. PubMed ID: 34749245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic segmentation of rectal tumor on diffusion-weighted images by deep learning with U-Net.
    Zhu HT; Zhang XY; Shi YJ; Li XT; Sun YS
    J Appl Clin Med Phys; 2021 Sep; 22(9):324-331. PubMed ID: 34343402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual parallel net: A novel deep learning model for rectal tumor segmentation via CNN and transformer with Gaussian Mixture prior.
    Zhang H; Yang X; Li D; Cui Y; Zhao J; Qiu S
    J Biomed Inform; 2023 Mar; 139():104304. PubMed ID: 36736447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic segmentation of rectal tumors from MRI using multiscale densely connected convolutional neural network based on attention mechanism.
    Zhang K; Yang X; Cui Y; Zhao J; Li D
    Phys Med Biol; 2023 Jul; 68(16):. PubMed ID: 37437591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Technical Note: A deep learning-based autosegmentation of rectal tumors in MR images.
    Wang J; Lu J; Qin G; Shen L; Sun Y; Ying H; Zhang Z; Hu W
    Med Phys; 2018 Jun; 45(6):2560-2564. PubMed ID: 29663417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cascaded atrous convolution and spatial pyramid pooling for more accurate tumor target segmentation for rectal cancer radiotherapy.
    Men K; Boimel P; Janopaul-Naylor J; Zhong H; Huang M; Geng H; Cheng C; Fan Y; Plastaras JP; Ben-Josef E; Xiao Y
    Phys Med Biol; 2018 Sep; 63(18):185016. PubMed ID: 30109986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A medical image segmentation method for rectal tumors based on multi-scale feature retention and multiple attention mechanisms.
    Zhao J; Liu L; Yang X; Cui Y; Li D; Zhang H; Zhang K
    Med Phys; 2024 May; 51(5):3275-3291. PubMed ID: 38569054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CAM-Wnet: An effective solution for accurate pulmonary embolism segmentation.
    Liu Z; Yuan H; Wang H
    Med Phys; 2022 Aug; 49(8):5294-5303. PubMed ID: 35609213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multiple-channel and atrous convolution network for ultrasound image segmentation.
    Zhang L; Zhang J; Li Z; Song Y
    Med Phys; 2020 Dec; 47(12):6270-6285. PubMed ID: 33007105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RTAU-Net: A novel 3D rectal tumor segmentation model based on dual path fusion and attentional guidance.
    Li D; Wang J; Yang J; Zhao J; Yang X; Cui Y; Zhang K
    Comput Methods Programs Biomed; 2023 Dec; 242():107842. PubMed ID: 37832426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial intelligence-based technology for semi-automated segmentation of rectal cancer using high-resolution MRI.
    Hamabe A; Ishii M; Kamoda R; Sasuga S; Okuya K; Okita K; Akizuki E; Sato Y; Miura R; Onodera K; Hatakenaka M; Takemasa I
    PLoS One; 2022; 17(6):e0269931. PubMed ID: 35714069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MRF-IUNet: A Multiresolution Fusion Brain Tumor Segmentation Network Based on Improved Inception U-Net.
    Jiang Y; Ye M; Wang P; Huang D; Lu X
    Comput Math Methods Med; 2022; 2022():6305748. PubMed ID: 35966244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DENSE-INception U-net for medical image segmentation.
    Zhang Z; Wu C; Coleman S; Kerr D
    Comput Methods Programs Biomed; 2020 Aug; 192():105395. PubMed ID: 32163817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Curv-Net: Curvilinear structure segmentation network based on selective kernel and multi-Bi-ConvLSTM.
    He Y; Sun H; Yi Y; Chen W; Kong J; Zheng C
    Med Phys; 2022 May; 49(5):3144-3158. PubMed ID: 35172016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fully semantic segmentation for rectal cancer based on post-nCRT MRl modality and deep learning framework.
    Xia S; Li Q; Zhu HT; Zhang XY; Shi YJ; Yang D; Wu J; Guan Z; Lu Q; Li XT; Sun YS
    BMC Cancer; 2024 Mar; 24(1):315. PubMed ID: 38454349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks.
    Men K; Dai J; Li Y
    Med Phys; 2017 Dec; 44(12):6377-6389. PubMed ID: 28963779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HMA-Net: A deep U-shaped network combined with HarDNet and multi-attention mechanism for medical image segmentation.
    Liu Q; Han Z; Liu Z; Zhang J
    Med Phys; 2023 Mar; 50(3):1635-1646. PubMed ID: 36303466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Research on Ground Object Classification Method of High Resolution Remote-Sensing Images Based on Improved DeeplabV3.
    Fu J; Yi X; Wang G; Mo L; Wu P; Kapula KE
    Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning-based medical image segmentation of the aorta using XR-MSF-U-Net.
    Chen W; Huang H; Huang J; Wang K; Qin H; Wong KKL
    Comput Methods Programs Biomed; 2022 Oct; 225():107073. PubMed ID: 36029551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.