These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 38654603)

  • 21. Effects of fatigue of rat EDL in situ on metabolism of phosphoinositides.
    Oueslati H; Gardiner PF
    Can J Appl Physiol; 1995 Sep; 20(3):289-99. PubMed ID: 8541792
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent advances in the understanding of skeletal muscle fatigue.
    Westerblad H; Allen DG
    Curr Opin Rheumatol; 2002 Nov; 14(6):648-52. PubMed ID: 12410085
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of muscle glycogen depletion on some metabolic and physiological responses to submaximal treadmill exercise.
    Davie AJ; Evans DL; Hodgson DR; Rose RJ
    Can J Vet Res; 1999 Oct; 63(4):241-7. PubMed ID: 10534002
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of Na+-K+ homeostasis and excitability in contracting muscles: implications for fatigue.
    Nielsen OB; de Paoli FV
    Appl Physiol Nutr Metab; 2007 Oct; 32(5):974-84. PubMed ID: 18059624
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Na+/K(+)-pump protects muscle excitability and contractility during exercise.
    Nielsen OB; Clausen T
    Exerc Sport Sci Rev; 2000 Oct; 28(4):159-64. PubMed ID: 11064849
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lactic acid restores skeletal muscle force in an in vitro fatigue model: are voltage-gated chloride channels involved?
    Bandschapp O; Soule CL; Iaizzo PA
    Am J Physiol Cell Physiol; 2012 Apr; 302(7):C1019-25. PubMed ID: 22237405
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Whole body fatigue and critical power: a physiological interpretation.
    Walsh ML
    Sports Med; 2000 Mar; 29(3):153-66. PubMed ID: 10739266
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of the T-system and the Na+-K+ pump on fatigue development in phasic skeletal muscle.
    Gonzalez-Serratos H; Chang R; Rozycka M; Blaustein M; Dedeyne PG
    J Muscle Res Cell Motil; 2004; 25(8):598-600. PubMed ID: 16118851
    [No Abstract]   [Full Text] [Related]  

  • 29. Alterations in calcium homeostasis reduce membrane excitability in amphibian skeletal muscle.
    Usher-Smith JA; Xu W; Fraser JA; Huang CL
    Pflugers Arch; 2006 Nov; 453(2):211-21. PubMed ID: 16955310
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Energy conservation attenuates the loss of skeletal muscle excitability during intense contractions.
    Macdonald WA; Ørtenblad N; Nielsen OB
    Am J Physiol Endocrinol Metab; 2007 Mar; 292(3):E771-8. PubMed ID: 17090754
    [TBL] [Abstract][Full Text] [Related]  

  • 31. M wave and H-reflex of soleus muscle before and after electrical muscle stimulation in healthy subjects.
    Tanino Y; Daikuya S; Nishimori T; Takasaki K; Suzuki T
    Electromyogr Clin Neurophysiol; 2003 Sep; 43(6):381-4. PubMed ID: 14535052
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Specific ATPases drive compartmentalized glycogen utilization in rat skeletal muscle.
    Nielsen J; Dubillot P; Stausholm MH; Ørtenblad N
    J Gen Physiol; 2022 Sep; 154(9):. PubMed ID: 35796670
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of fatigue on corticospinal excitability of the human knee extensors.
    Kennedy DS; McNeil CJ; Gandevia SC; Taylor JL
    Exp Physiol; 2016 Dec; 101(12):1552-1564. PubMed ID: 27652591
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of prolonged training, overtraining and detraining on skeletal muscle metabolites and enzymes.
    McGowan CM; Golland LC; Evans DL; Hodgson DR; Rose RJ
    Equine Vet J Suppl; 2002 Sep; (34):257-63. PubMed ID: 12405697
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel role for sphingolipid metabolism in oxidant-mediated skeletal muscle fatigue. Focus on "Sphingomyelinase stimulates oxidant signaling to weaken skeletal muscle and promote fatigue".
    Cowart LA
    Am J Physiol Cell Physiol; 2010 Sep; 299(3):C549-51. PubMed ID: 20573998
    [No Abstract]   [Full Text] [Related]  

  • 36. Neuromuscular fatigue in racquet sports.
    Girard O; Millet GP
    Neurol Clin; 2008 Feb; 26(1):181-94; x. PubMed ID: 18295090
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acidosis Is Not a Significant Cause of Skeletal Muscle Fatigue.
    Westerblad H
    Med Sci Sports Exerc; 2016 Nov; 48(11):2339-2342. PubMed ID: 27755383
    [No Abstract]   [Full Text] [Related]  

  • 38. Influence of activation frequency on cellular signalling pathways during fatiguing contractions in rat skeletal muscle.
    Russ DW; Lovering RM
    Exp Physiol; 2006 Nov; 91(6):957-66. PubMed ID: 16857718
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Muscle fatigue: lactic acid or inorganic phosphate the major cause?
    Westerblad H; Allen DG; Lännergren J
    News Physiol Sci; 2002 Feb; 17():17-21. PubMed ID: 11821531
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Post-exercise recovery of contractile function and endurance in humans and mice is accelerated by heating and slowed by cooling skeletal muscle.
    Cheng AJ; Willis SJ; Zinner C; Chaillou T; Ivarsson N; Ørtenblad N; Lanner JT; Holmberg HC; Westerblad H
    J Physiol; 2017 Dec; 595(24):7413-7426. PubMed ID: 28980321
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.