These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38654690)

  • 21. Optically Generated Free-Carrier Collection from an All Single-Walled Carbon Nanotube Active Layer.
    Kubie L; Watkins KJ; Ihly R; Wladkowski HV; Blackburn JL; Rice WD; Parkinson BA
    J Phys Chem Lett; 2018 Sep; 9(17):4841-4847. PubMed ID: 30085684
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exciton binding energy in semiconducting single-walled carbon nanotubes.
    Ma YZ; Valkunas L; Bachilo SM; Fleming GR
    J Phys Chem B; 2005 Aug; 109(33):15671-4. PubMed ID: 16852986
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultrafast Exciton Trapping at
    Sykes ME; Kim M; Wu X; Wiederrecht GP; Peng L; Wang Y; Gosztola DJ; Ma X
    ACS Nano; 2019 Nov; 13(11):13264-13270. PubMed ID: 31661244
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electronic structure and chemical nature of oxygen dopant states in carbon nanotubes.
    Ma X; Adamska L; Yamaguchi H; Yalcin SE; Tretiak S; Doorn SK; Htoon H
    ACS Nano; 2014 Oct; 8(10):10782-9. PubMed ID: 25265272
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Excitons in Single-Walled Carbon Nanotubes and Their Dynamics.
    Amori AR; Hou Z; Krauss TD
    Annu Rev Phys Chem; 2018 Apr; 69():81-99. PubMed ID: 29401037
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photoluminescence Dynamics Defined by Exciton Trapping Potential of Coupled Defect States in DNA-Functionalized Carbon Nanotubes.
    Zheng Y; Weight BM; Jones AC; Chandrasekaran V; Gifford BJ; Tretiak S; Doorn SK; Htoon H
    ACS Nano; 2021 Jan; 15(1):923-933. PubMed ID: 33395262
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultrafast exciton delocalization and localization dynamics of a perylene bisimide quadruple π-stack: a nonadiabatic dynamics simulation.
    Zhang S; Zeng YP; Wan XJ; Xu DH; Liu XY; Cui G; Li L
    Phys Chem Chem Phys; 2022 Mar; 24(12):7293-7302. PubMed ID: 35262152
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The excitonic effects in single and double-walled boron nitride nanotubes.
    Wang S; Li Y; Yip J; Wang J
    J Chem Phys; 2014 Jun; 140(24):244701. PubMed ID: 24985662
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Relative ordering between bright and dark excitons in single-walled carbon nanotubes.
    Zhou W; Nakamura D; Liu H; Kataura H; Takeyama S
    Sci Rep; 2014 Nov; 4():6999. PubMed ID: 25385545
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Broken Symmetry Optical Transitions in (6,5) Single-Walled Carbon Nanotubes Containing
    Trerayapiwat KJ; Li X; Ma X; Sharifzadeh S
    Nano Lett; 2024 Jan; 24(2):667-671. PubMed ID: 38174941
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electroluminescence from Single-Walled Carbon Nanotubes with Quantum Defects.
    Li MK; Riaz A; Wederhake M; Fink K; Saha A; Dehm S; He X; Schöppler F; Kappes MM; Htoon H; Popov VN; Doorn SK; Hertel T; Hennrich F; Krupke R
    ACS Nano; 2022 Aug; 16(8):11742-11754. PubMed ID: 35732039
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Probing Carrier Dynamics in
    Zheng W; Zorn NF; Bonn M; Zaumseil J; Wang HI
    ACS Nano; 2022 Jun; 16(6):9401-9409. PubMed ID: 35709437
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coupling between Emissive Defects on Carbon Nanotubes: Modeling Insights.
    Weight BM; Sifain AE; Gifford BJ; Kilin D; Kilina S; Tretiak S
    J Phys Chem Lett; 2021 Aug; 12(32):7846-7853. PubMed ID: 34380317
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Defect-induced photoluminescence from dark excitonic states in individual single-walled carbon nanotubes.
    Harutyunyan H; Gokus T; Green AA; Hersam MC; Allegrini M; Hartschuh A
    Nano Lett; 2009 May; 9(5):2010-4. PubMed ID: 19331347
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optoelectronic Properties of Carbon Nanorings: Excitonic Effects from Time-Dependent Density Functional Theory.
    Wong BM
    J Phys Chem C Nanomater Interfaces; 2009 Dec; 113(52):21921-21927. PubMed ID: 22481999
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nonadiabatic Dynamics Simulations Reveal Distinct Effects of the Thickness of PTB7 on Interfacial Electron and Hole Transfer Dynamics in PTB7@MoS
    Liu XY; Chen WK; Fang WH; Cui G
    J Phys Chem Lett; 2019 Jun; 10(11):2949-2956. PubMed ID: 31083919
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Linking optical spectra to free charges in donor/acceptor heterojunctions: cross-correlation of transient microwave and optical spectroscopy.
    Kang HS; Peurifoy S; Zhang B; Ferguson AJ; Reid OG; Nuckolls C; Blackburn JL
    Mater Horiz; 2021 May; 8(5):1509-1517. PubMed ID: 34846459
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Solvent effects on the photoinduced charge separation dynamics of directly linked zinc phthalocyanine-perylenediimide dyads: a nonadiabatic dynamics simulation with an optimally tuned screened range-separated hybrid functional.
    Liu S; Liu SS; Tang XM; Liu XY; Yang JJ; Cui G; Li L
    Phys Chem Chem Phys; 2023 Oct; 25(41):28452-28464. PubMed ID: 37846460
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unveiling the Role of Hot Charge-Transfer States in Molecular Aggregates via Nonadiabatic Dynamics.
    Fazzi D; Barbatti M; Thiel W
    J Am Chem Soc; 2016 Apr; 138(13):4502-11. PubMed ID: 26967020
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.