These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 38654698)

  • 21. Cable-Car Electrocatalysis to Drive Fully Decoupled Water Splitting.
    Long Y; Yang C; Wu Y; Deng B; Li Z; Hussain N; Wang K; Wang R; He X; Du P; Guo Z; Lang J; Huang K; Wu H
    Adv Sci (Weinh); 2023 Sep; 10(26):e2301872. PubMed ID: 37395639
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficient Water Splitting Actualized through an Electrochemistry-Induced Hetero-Structured Antiperovskite/(Oxy)Hydroxide Hybrid.
    She S; Zhu Y; Tahini HA; Wu X; Guan D; Chen Y; Dai J; Chen Y; Tang W; Smith SC; Wang H; Zhou W; Shao Z
    Small; 2020 Dec; 16(51):e2006800. PubMed ID: 33251694
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coaxial Ni-S@N-Doped Carbon Nanofibers Derived Hierarchical Electrodes for Efficient H
    Zhang Y; Qiu Y; Wang Y; Li B; Zhang Y; Ma Z; Liu S
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):3937-3948. PubMed ID: 33439615
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conductive N, S doped Copolymers as Stable Metal-Free Electrocatalysts for Water Splitting.
    Mathew S; Park KH; Han Y; Hui KN; Li OL; Cho YR
    ACS Appl Mater Interfaces; 2023 Oct; 15(40):46829-46839. PubMed ID: 37756659
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels.
    Kuang Y; Kenney MJ; Meng Y; Hung WH; Liu Y; Huang JE; Prasanna R; Li P; Li Y; Wang L; Lin MC; McGehee MD; Sun X; Dai H
    Proc Natl Acad Sci U S A; 2019 Apr; 116(14):6624-6629. PubMed ID: 30886092
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recent Advancements of Polymeric Membranes in Anion Exchange Membrane Water Electrolyzer (AEMWE): A Critical Review.
    Vinodh R; Kalanur SS; Natarajan SK; Pollet BG
    Polymers (Basel); 2023 Apr; 15(9):. PubMed ID: 37177289
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tuning Stainless Steel Oxide Layers through Potential Cycling─AEM Water Electrolysis Free of Critical Raw Materials.
    Ferriday TB; Nuggehalli Sampathkumar S; Mensi MD; Middleton PH; Van Herle J; Kolhe ML
    ACS Appl Mater Interfaces; 2024 Jun; 16(23):29963-29978. PubMed ID: 38809814
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Selectivity of Oxygen Evolution Reaction on Carbon Cloth-Supported δ-MnO
    Yan H; Wang X; Linkov V; Ji S; Wang R
    Molecules; 2023 Jan; 28(2):. PubMed ID: 36677912
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Anion-exchange membrane water electrolyzers and fuel cells.
    Yang Y; Li P; Zheng X; Sun W; Dou SX; Ma T; Pan H
    Chem Soc Rev; 2022 Nov; 51(23):9620-9693. PubMed ID: 36345857
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MOF-Derived Noble Metal Free Catalysts for Electrochemical Water Splitting.
    Tao Z; Wang T; Wang X; Zheng J; Li X
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):35390-35397. PubMed ID: 27966855
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sulfidation of CoCuO
    Zhang J; Zhao S; Chen B; Yin S; Feng Y; Yin Y
    ACS Appl Mater Interfaces; 2023 Oct; 15(39):45756-45763. PubMed ID: 37738288
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Decoupled Water Electrolysis Driven by 1 cm
    Lv F; Qin Z; Wu J; Pan L; Liu L; Chen Y; Zhao Y
    ChemSusChem; 2023 Jan; 16(1):e202201689. PubMed ID: 36279197
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highly Efficient and Stable Catalyst Based on Co(OH)
    Wang Z; Ji S; Liu F; Wang H; Wang X; Wang Q; Pollet BG; Wang R
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):29791-29798. PubMed ID: 31343158
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Amorphous Catalysts and Electrochemical Water Splitting: An Untold Story of Harmony.
    Anantharaj S; Noda S
    Small; 2020 Jan; 16(2):e1905779. PubMed ID: 31823508
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Advanced membrane-based electrode engineering toward efficient and durable water electrolysis and cost-effective seawater electrolysis in membrane electrolyzers.
    Tang J; Su C; Shao Z
    Exploration (Beijing); 2024 Feb; 4(1):20220112. PubMed ID: 38854490
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Super-Hydrophilic Leaflike Sn
    Riyajuddin S; Pahuja M; Sachdeva PK; Azmi K; Kumar S; Afshan M; Ali F; Sultana J; Maruyama T; Bera C; Ghosh K
    ACS Nano; 2022 Mar; 16(3):4861-4875. PubMed ID: 35188366
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultrafast Carbothermal Shock Constructing Ni
    Zheng J; Zhang J; Zhang L; Zhang W; Wang X; Cui Z; Song H; Liang Z; Du L
    ACS Appl Mater Interfaces; 2022 May; 14(17):19524-19533. PubMed ID: 35465674
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nickel-Based Anode Catalysts for Efficient and Affordable Anion-Exchange Membrane Fuel Cells.
    Gao FY; Gao MR
    Acc Chem Res; 2023 Jun; 56(12):1445-1457. PubMed ID: 37170082
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent Advances in Alkaline Exchange Membrane Water Electrolysis and Electrode Manufacturing.
    López-Fernández E; Sacedón CG; Gil-Rostra J; Yubero F; González-Elipe AR; de Lucas-Consuegra A
    Molecules; 2021 Oct; 26(21):. PubMed ID: 34770735
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A review of water electrolysis-based systems for hydrogen production using hybrid/solar/wind energy systems.
    Nasser M; Megahed TF; Ookawara S; Hassan H
    Environ Sci Pollut Res Int; 2022 Dec; 29(58):86994-87018. PubMed ID: 36280638
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.