These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 38654979)

  • 1. Mild hydrolysis of chemically stable valerolactams by a biocatalytic ATP-dependent system fueled by metaphosphate.
    Roth S; Gandomkar S; Rossi F; Hall M
    Green Chem; 2024 Apr; 26(8):4498-4505. PubMed ID: 38654979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Progress in the metabolic engineering of bio-based lactams and their ω-amino acids precursors.
    Gordillo Sierra AR; Alper HS
    Biotechnol Adv; 2020 Nov; 43():107587. PubMed ID: 32659344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrolytic stability versus ring size in lactams: implications for the development of lactam antibiotics and other serine protease inhibitors.
    Imming P; Klar B; Dix D
    J Med Chem; 2000 Nov; 43(22):4328-31. PubMed ID: 11063627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of an Acyl-CoA Ligase from Streptomyces aizunensis for Lactam Biosynthesis.
    Zhang J; Barajas JF; Burdu M; Wang G; Baidoo EE; Keasling JD
    ACS Synth Biol; 2017 May; 6(5):884-890. PubMed ID: 28414905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of Escherichia coli for polyamides monomer δ-valerolactam production from feedstock lysine.
    Xu Y; Zhou D; Luo R; Yang X; Wang B; Xiong X; Shen W; Wang D; Wang Q
    Appl Microbiol Biotechnol; 2020 Dec; 104(23):9965-9977. PubMed ID: 33064187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic and structural properties of ATP-dependent caprolactamase from Pseudomonas jessenii.
    Marjanovic A; Rozeboom HJ; de Vries MS; Mayer C; Otzen M; Wijma HJ; Janssen DB
    Proteins; 2021 Sep; 89(9):1079-1098. PubMed ID: 33826169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved δ-valerolactam templates for the assembly of Aβ-miniamyloids by boronic ester formation.
    Wuttke A; Fischer SN; Nebel A; Marsch M; Geyer A
    Org Biomol Chem; 2016 Jun; 14(22):5032-48. PubMed ID: 27104617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of carbamoyl phosphate synthetase from Escherichia coli--binding of the ATP molecules used in the reaction and sequestration by the enzyme of the ATP molecule that yields carbamoyl phosphate.
    Rubio V; Llorente P; Britton HG
    Eur J Biochem; 1998 Jul; 255(1):262-70. PubMed ID: 9692927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stabilization of the ADP/metaphosphate intermediate during ATP hydrolysis in pre-power stroke myosin: quantitative anatomy of an enzyme.
    Kiani FA; Fischer S
    J Biol Chem; 2013 Dec; 288(49):35569-80. PubMed ID: 24165121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Integrated Cofactor/Co-Product Recycling Cascade for the Biosynthesis of Nylon Monomers from Cycloalkylamines.
    Sarak S; Sung S; Jeon H; Patil MD; Khobragade TP; Pagar AD; Dawson PE; Yun H
    Angew Chem Int Ed Engl; 2021 Feb; 60(7):3481-3486. PubMed ID: 33140477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering of Escherichia coli for the production of four-, five- and six-carbon lactams.
    Chae TU; Ko YS; Hwang KS; Lee SY
    Metab Eng; 2017 May; 41():82-91. PubMed ID: 28390749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional structure of nylon hydrolase and mechanism of nylon-6 hydrolysis.
    Negoro S; Shibata N; Tanaka Y; Yasuhira K; Shibata H; Hashimoto H; Lee YH; Oshima S; Santa R; Oshima S; Mochiji K; Goto Y; Ikegami T; Nagai K; Kato D; Takeo M; Higuchi Y
    J Biol Chem; 2012 Feb; 287(7):5079-90. PubMed ID: 22187439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bridged Bicyclic Lactam Enables Chemically Recyclable Nylon.
    Lv W; Li M; Tao Y
    Angew Chem Int Ed Engl; 2024 May; 63(19):e202402541. PubMed ID: 38502026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 31P NMR of Mg-ATP in dilute solutions: complexation and exchange.
    Glonek T
    Int J Biochem; 1992 Oct; 24(10):1533-59. PubMed ID: 1397481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyperthermophilic Carbamate Kinase Stability and Anabolic
    Hennessy JE; Latter MJ; Fazelinejad S; Philbrook A; Bartkus DM; Kim HK; Onagi H; Oakeshott JG; Scott C; Alissandratos A; Easton CJ
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of Cyclic Amides as Activating Groups in N-C Bond Cross-Coupling: Discovery of
    Rahman MM; Pyle DJ; Bisz E; Dziuk B; Ejsmont K; Lalancette R; Wang Q; Chen H; Szostak R; Szostak M
    J Org Chem; 2021 Aug; 86(15):10455-10466. PubMed ID: 34275281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocatalytic Synthesis of Moclobemide Using the Amide Bond Synthetase McbA Coupled with an ATP Recycling System.
    Petchey MR; Rowlinson B; Lloyd RC; Fairlamb IJS; Grogan G
    ACS Catal; 2020 Apr; 10(8):4659-4663. PubMed ID: 32337091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Expression of polyphosphate kinase from
    Huang X; Li Y; DU C; Yuan W
    Sheng Wu Gong Cheng Xue Bao; 2022 Dec; 38(12):4669-4680. PubMed ID: 36593201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective recovery of caprolactam from the thermo-catalytic conversion of textile waste over γ-Al
    Yang W; Jung S; Lee J; Lee SW; Kim YT; Kwon EE
    Environ Pollut; 2023 Jul; 329():121684. PubMed ID: 37087088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of protonation on the hydrolysis of triphosphate in vacuum and the implications for catalysis by nucleotide hydrolyzing enzymes.
    Kiani FA; Fischer S
    BMC Biochem; 2016 Jun; 17(1):12. PubMed ID: 27974044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.