These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38655358)

  • 1. Automated detection of otosclerosis with interpretable deep learning using temporal bone computed tomography images.
    Wang Z; Song J; Lin K; Hong W; Mao S; Wu X; Zhang J
    Heliyon; 2024 Apr; 10(8):e29670. PubMed ID: 38655358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of explainable artificial intelligence to explore types of fenestral otosclerosis misdiagnosed when using temporal bone high-resolution computed tomography.
    Tan W; Guan P; Wu L; Chen H; Li J; Ling Y; Fan T; Wang Y; Li J; Yan B
    Ann Transl Med; 2021 Jun; 9(12):969. PubMed ID: 34277769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utility of deep learning for the diagnosis of otosclerosis on temporal bone CT.
    Fujima N; Andreu-Arasa VC; Onoue K; Weber PC; Hubbell RD; Setty BN; Sakai O
    Eur Radiol; 2021 Jul; 31(7):5206-5211. PubMed ID: 33409781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Importance of a dedicated neuroradiologist in reporting high-resolution computed tomography for otosclerosis: a retrospective comparison study of 40 patients.
    Kanona H; Rana I; Offiah C; Patel N
    J Laryngol Otol; 2017 Jun; 131(6):492-496. PubMed ID: 28318477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Learning in Automated Region Proposal and Diagnosis of Chronic Otitis Media Based on Computed Tomography.
    Wang YM; Li Y; Cheng YS; He ZY; Yang JM; Xu JH; Chi ZC; Chi FL; Ren DD
    Ear Hear; 2020; 41(3):669-677. PubMed ID: 31567561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fully Automated Diagnosis of Anterior Cruciate Ligament Tears on Knee MR Images by Using Deep Learning.
    Liu F; Guan B; Zhou Z; Samsonov A; Rosas H; Lian K; Sharma R; Kanarek A; Kim J; Guermazi A; Kijowski R
    Radiol Artif Intell; 2019 May; 1(3):180091. PubMed ID: 32076658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diagnostic Efficacy of High-Resolution Computed Tomography Densitometry for Diagnosing Otosclerosis.
    Puiggrós IV; Moreno EG; Dotu CO; Agustí MQI; Díaz FL
    Otol Neurotol; 2023 Dec; 44(10):e697-e701. PubMed ID: 37733986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Additive value of "otosclerosis-weighted" images for the CT diagnosis of fenestral otosclerosis.
    Yamashita K; Hiwatashi A; Togao O; Kondo M; Kikuchi K; Inoguchi T; Maehara J; Kyuragi Y; Honda H
    Acta Radiol; 2017 Oct; 58(10):1215-1221. PubMed ID: 28090791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative analysis of preoperative diagnostic values of HRCT and CBCT in patients with histologically diagnosed otosclerotic stapes footplates.
    Révész P; Liktor B; Liktor B; Sziklai I; Gerlinger I; Karosi T
    Eur Arch Otorhinolaryngol; 2016 Jan; 273(1):63-72. PubMed ID: 25559466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The radiological diagnosis of fenestral otosclerosis: the utility of histogram analysis using multidetector row CT.
    Yamashita K; Yoshiura T; Hiwatashi A; Togao O; Kikuchi K; Inoguchi T; Kumazawa S; Honda H
    Eur Arch Otorhinolaryngol; 2014 Dec; 271(12):3277-82. PubMed ID: 24534895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Missed Radiological Diagnosis of Otosclerosis in High-Resolution Computed Tomography of the Temporal Bone-Retrospective Analysis of Imaging, Radiological Reports, and Request Forms.
    Bassiouni M; Bauknecht HC; Muench G; Olze H; Pohlan J
    J Clin Med; 2023 Jan; 12(2):. PubMed ID: 36675559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Learning Prediction of Axillary Lymph Node Metastasis in Breast Cancer Patients Using Clinical Implication-Applied Preprocessed CT Images.
    Park TY; Kwon LM; Hyeon J; Cho BJ; Kim BJ
    Curr Oncol; 2024 Apr; 31(4):2278-2288. PubMed ID: 38668072
    [No Abstract]   [Full Text] [Related]  

  • 13. Differentiation Between Malignant and Benign Pulmonary Nodules by Using Automated Three-Dimensional High-Resolution Representation Learning With Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography.
    Lai YC; Wu KC; Tseng NC; Chen YJ; Chang CJ; Yen KY; Kao CH
    Front Med (Lausanne); 2022; 9():773041. PubMed ID: 35372415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-scale, domain knowledge-guided attention + random forest: a two-stage deep learning-based multi-scale guided attention models to diagnose idiopathic pulmonary fibrosis from computed tomography images.
    Yu W; Zhou H; Choi Y; Goldin JG; Teng P; Wong WK; McNitt-Gray MF; Brown MS; Kim GHJ
    Med Phys; 2023 Feb; 50(2):894-905. PubMed ID: 36254789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fully automated detection of retinal disorders by image-based deep learning.
    Li F; Chen H; Liu Z; Zhang X; Wu Z
    Graefes Arch Clin Exp Ophthalmol; 2019 Mar; 257(3):495-505. PubMed ID: 30610422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of a comprehensive brain computed tomography deep learning model on radiologist detection accuracy.
    Buchlak QD; Tang CHM; Seah JCY; Johnson A; Holt X; Bottrell GM; Wardman JB; Samarasinghe G; Dos Santos Pinheiro L; Xia H; Ahmad HK; Pham H; Chiang JI; Ektas N; Milne MR; Chiu CHY; Hachey B; Ryan MK; Johnston BP; Esmaili N; Bennett C; Goldschlager T; Hall J; Vo DT; Oakden-Rayner L; Leveque JC; Farrokhi F; Abramson RG; Jones CM; Edelstein S; Brotchie P
    Eur Radiol; 2024 Feb; 34(2):810-822. PubMed ID: 37606663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated meniscus segmentation and tear detection of knee MRI with a 3D mask-RCNN.
    Li YZ; Wang Y; Fang KB; Zheng HZ; Lai QQ; Xia YF; Chen JY; Dai ZS
    Eur J Med Res; 2022 Nov; 27(1):247. PubMed ID: 36372871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of bone mineral density from computed tomography: application of deep learning with a convolutional neural network.
    Yasaka K; Akai H; Kunimatsu A; Kiryu S; Abe O
    Eur Radiol; 2020 Jun; 30(6):3549-3557. PubMed ID: 32060712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and Validation of Deep Learning Models for Screening Multiple Abnormal Findings in Retinal Fundus Images.
    Son J; Shin JY; Kim HD; Jung KH; Park KH; Park SJ
    Ophthalmology; 2020 Jan; 127(1):85-94. PubMed ID: 31281057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and Validation of a Convolutional Neural Network Model to Predict a Pathologic Fracture in the Proximal Femur Using Abdomen and Pelvis CT Images of Patients With Advanced Cancer.
    Joo MW; Ko T; Kim MS; Lee YS; Shin SH; Chung YG; Lee HK
    Clin Orthop Relat Res; 2023 Nov; 481(11):2247-2256. PubMed ID: 37615504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.