These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 38655367)
1. A CMIP6 multi-model based analysis of potential climate change effects on watershed runoff using SWAT model: A case study of kunhar river basin, Pakistan. Waheed A; Jamal MH; Javed MF; Idlan Muhammad K Heliyon; 2024 Apr; 10(8):e28951. PubMed ID: 38655367 [TBL] [Abstract][Full Text] [Related]
2. Projected Streamflow in the Kurau River Basin of Western Malaysia under Future Climate Scenarios. Adib MNM; Rowshon MK; Mojid MA; Habibu I Sci Rep; 2020 May; 10(1):8336. PubMed ID: 32433561 [TBL] [Abstract][Full Text] [Related]
3. Hydrology of mountainous areas in the upper Indus Basin, Northern Pakistan with the perspective of climate change. Ahmad Z; Hafeez M; Ahmad I Environ Monit Assess; 2012 Sep; 184(9):5255-74. PubMed ID: 22109645 [TBL] [Abstract][Full Text] [Related]
4. Coupling SWAT and Bi-LSTM for improving daily-scale hydro-climatic simulation and climate change impact assessment in a tropical river basin. Yang S; Tan ML; Song Q; He J; Yao N; Li X; Yang X J Environ Manage; 2023 Mar; 330():117244. PubMed ID: 36621311 [TBL] [Abstract][Full Text] [Related]
5. Modelling the impact of past and future climate scenarios on streamflow in a highly mountainous watershed: A case study in the West Seti River Basin, Nepal. Bhatta B; Shrestha S; Shrestha PK; Talchabhadel R Sci Total Environ; 2020 Oct; 740():140156. PubMed ID: 32563002 [TBL] [Abstract][Full Text] [Related]
6. Assessing impacts of global climate change on water and food security in the black soil region of Northeast China using an improved SWAT-CO Zhang Y; Liu H; Qi J; Feng P; Zhang X; Liu L; Marek GW; Srinivasan R; Chen Y Sci Total Environ; 2023 Jan; 857(Pt 2):159482. PubMed ID: 36265642 [TBL] [Abstract][Full Text] [Related]
7. Hydrological modelling of a snow/glacier-fed western Himalayan basin to simulate the current and future streamflows under changing climate scenarios. Shukla S; Jain SK; Kansal ML Sci Total Environ; 2021 Nov; 795():148871. PubMed ID: 34378536 [TBL] [Abstract][Full Text] [Related]
8. Enhancing daily streamflow simulation using the coupled SWAT-BiLSTM approach for climate change impact assessment in Hai-River Basin. Zhang X; Qi Y; Liu F; Li H; Sun S Sci Rep; 2023 Sep; 13(1):15169. PubMed ID: 37704827 [TBL] [Abstract][Full Text] [Related]
9. [Impact of changes in land use and climate on the runoff in Liuxihe Watershed based on SWAT model]. Yuan YZ; Zhang ZD; Meng JH Ying Yong Sheng Tai Xue Bao; 2015 Apr; 26(4):989-98. PubMed ID: 26259438 [TBL] [Abstract][Full Text] [Related]
10. Differences in extremes and uncertainties in future runoff simulations using SWAT and LSTM for SSP scenarios. Song YH; Chung ES; Shahid S Sci Total Environ; 2022 Sep; 838(Pt 3):156162. PubMed ID: 35640757 [TBL] [Abstract][Full Text] [Related]
11. Future climate and cryosphere impacts on the hydrology of a scarcely gauged catchment on the Jhelum river basin, Northern Pakistan. Azmat M; Qamar MU; Huggel C; Hussain E Sci Total Environ; 2018 Oct; 639():961-976. PubMed ID: 29929335 [TBL] [Abstract][Full Text] [Related]
12. Climate-change impacts on hydrology and nutrients in a Danish lowland river basin. Andersen HE; Kronvang B; Larsen SE; Hoffmann CC; Jensen TS; Rasmussen EK Sci Total Environ; 2006 Jul; 365(1-3):223-37. PubMed ID: 16647104 [TBL] [Abstract][Full Text] [Related]
13. Comparing CMIP-3 and CMIP-5 climate projections on flooding estimation of Devils Lake of North Dakota, USA. Kharel G; Kirilenko A PeerJ; 2018; 6():e4711. PubMed ID: 29736343 [TBL] [Abstract][Full Text] [Related]
14. SWAT-MODSIM-PSO optimization of multi-crop planning in the Karkheh River Basin, Iran, under the impacts of climate change. Fereidoon M; Koch M Sci Total Environ; 2018 Jul; 630():502-516. PubMed ID: 29486443 [TBL] [Abstract][Full Text] [Related]
15. Impact of climate change on future precipitation amounts, seasonal distribution, and streamflow in the Omo-Gibe basin, Ethiopia. Orkodjo TP; Kranjac-Berisavijevic G; Abagale FK Heliyon; 2022 Jun; 8(6):e09711. PubMed ID: 35756105 [TBL] [Abstract][Full Text] [Related]
16. Integrating conceptual and machine learning models to enhance daily-Scale streamflow simulation and assessing climate change impact in the watersheds of the Godavari basin, India. Reddy NM; Saravanan S; Paneerselvam B Environ Res; 2024 Jun; 250():118403. PubMed ID: 38365058 [TBL] [Abstract][Full Text] [Related]
17. Impacts of climate and land use change on groundwater recharge under shared socioeconomic pathways: A case of Siem Reap, Cambodia. Buhay Bucton BG; Shrestha S; Kc S; Mohanasundaram S; Virdis SGP; Chaowiwat W Environ Res; 2022 Aug; 211():113070. PubMed ID: 35288155 [TBL] [Abstract][Full Text] [Related]
18. Investigating the impacts of climate change on hydroclimatic extremes in the Tar-Pamlico River basin, North Carolina. Tran TN; Tapas MR; Do SK; Etheridge R; Lakshmi V J Environ Manage; 2024 Jul; 363():121375. PubMed ID: 38850926 [TBL] [Abstract][Full Text] [Related]
19. The effects of future nationwide forest transition to discharge in the 21st century with regard to general circulation model climate change scenarios. Mouri G; Nakano K; Tsuyama I; Tanaka N Environ Res; 2016 Aug; 149():288-296. PubMed ID: 26852164 [TBL] [Abstract][Full Text] [Related]
20. Climate change multi-model projections in CMIP6 scenarios in Central Hokkaido, Japan. Peng S; Wang C; Li Z; Mihara K; Kuramochi K; Toma Y; Hatano R Sci Rep; 2023 Jan; 13(1):230. PubMed ID: 36604582 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]