These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38656161)

  • 1. Impact of Confinement and Zwitterionic Ligand Chemistry on Ion-Ion Selectivity of Functionalized Nanopores.
    Sachar HS; Zofchak ES; Marioni N; Zhang Z; Ganesan V
    Langmuir; 2024 May; 40(18):9563-9578. PubMed ID: 38656161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of counter-ions on the ion selectivity of potassium and sodium ions in nanopores.
    Tang D; Kim D
    Biomed Mater Eng; 2014; 24(1):383-90. PubMed ID: 24211920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ion transport and selectivity in biomimetic nanopores with pH-tunable zwitterionic polyelectrolyte brushes.
    Zeng Z; Yeh LH; Zhang M; Qian S
    Nanoscale; 2015 Oct; 7(40):17020-9. PubMed ID: 26415890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theorization on ion-exchange equilibria: activity of species in 2-D phases.
    Tamura H
    J Colloid Interface Sci; 2004 Nov; 279(1):1-22. PubMed ID: 15380407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gating of Hydrophobic Nanopores with Large Anions.
    Polster JW; Acar ET; Aydin F; Zhan C; Pham TA; Siwy ZS
    ACS Nano; 2020 Apr; 14(4):4306-4315. PubMed ID: 32181640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward high permeability, selectivity and controllability of water desalination with FePc nanopores.
    Deng Q; Pan J; Yin X; Wang X; Zhao L; Kang SG; Jimenez-Cruz CA; Zhou R; Li J
    Phys Chem Chem Phys; 2016 Mar; 18(11):8140-7. PubMed ID: 26923172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intrapore energy barriers govern ion transport and selectivity of desalination membranes.
    Zhou X; Wang Z; Epsztein R; Zhan C; Li W; Fortner JD; Pham TA; Kim JH; Elimelech M
    Sci Adv; 2020 Nov; 6(48):. PubMed ID: 33239305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlations in Charged Multipore Systems: Implications for Enhancing Selectivity and Permeability in Nanoporous Membranes.
    Shoemaker BA; Khalifa O; Haji-Akbari A
    ACS Nano; 2024 Jan; 18(2):1420-1431. PubMed ID: 38176076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective Fluoride Transport in Subnanometer TiO
    Zhou X; Heiranian M; Yang M; Epsztein R; Gong K; White CE; Hu S; Kim JH; Elimelech M
    ACS Nano; 2021 Oct; 15(10):16828-16838. PubMed ID: 34637268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling the selective partitioning of cations into negatively charged nanopores in water.
    Yang L; Garde S
    J Chem Phys; 2007 Feb; 126(8):084706. PubMed ID: 17343468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Programming Ionic Pore Accessibility in Zwitterionic Polymer Modified Nanopores.
    Silies L; Andrieu-Brunsen A
    Langmuir; 2018 Jan; 34(3):807-816. PubMed ID: 28535052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterogeneous sub-continuum ionic transport in statistically isolated graphene nanopores.
    Jain T; Rasera BC; Guerrero RJ; Boutilier MS; O'Hern SC; Idrobo JC; Karnik R
    Nat Nanotechnol; 2015 Dec; 10(12):1053-7. PubMed ID: 26436566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gas Separation Membranes with Atom-Thick Nanopores: The Potential of Nanoporous Single-Layer Graphene.
    Villalobos LF; Babu DJ; Hsu KJ; Van Goethem C; Agrawal KV
    Acc Mater Res; 2022 Oct; 3(10):1073-1087. PubMed ID: 36338295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Self-Assembly Enables Tuning of Nanopores in Atomically Thin Graphene Membranes for Highly Selective Transport.
    Jang D; Bakli C; Chakraborty S; Karnik R
    Adv Mater; 2022 Mar; 34(11):e2108940. PubMed ID: 34984739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local and diffusive dynamics of LiCl aqueous solutions in pristine and modified silica nanopores.
    Schneider S; Brodrecht M; Breitzke H; Wissel T; Buntkowsky G; Varol HS; Brilmayer R; Andrieu-Brunsen A; Vogel M
    J Chem Phys; 2022 Jul; 157(3):034503. PubMed ID: 35868917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Response of Ionic Hydration Structure and Selective Transport Behavior to Aqueous Solution Chemistry during Nanofiltration.
    Lu C; Chen Z; Wu Y; Zhang Y; Wang F; Hu C; Qu J
    Environ Sci Technol; 2024 Jul; 58(26):11791-11801. PubMed ID: 38871647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ozark Graphene Nanopore for Efficient Water Desalination.
    Cao Z; Markey G; Barati Farimani A
    J Phys Chem B; 2021 Oct; 125(40):11256-11263. PubMed ID: 34591487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Covalently Functionalized Nanopores for Highly Selective Separation of Monovalent Ions.
    Guo L; Liu Y; Zeng H; Zhang S; Song R; Yang J; Han X; Wang Y; Wang L
    Adv Mater; 2024 Jan; 36(1):e2307242. PubMed ID: 37717168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Designing biomimetic pores based on carbon nanotubes.
    García-Fandiño R; Sansom MS
    Proc Natl Acad Sci U S A; 2012 May; 109(18):6939-44. PubMed ID: 22509000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ion exclusion and electrokinetic effects resulting from electro-osmotic flow of salt solutions in charged silica nanopores.
    Haria NR; Lorenz CD
    Phys Chem Chem Phys; 2012 May; 14(17):5935-44. PubMed ID: 22441317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.