These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38656161)

  • 21. Ion leakage through transient water pores in protein-free lipid membranes driven by transmembrane ionic charge imbalance.
    Gurtovenko AA; Vattulainen I
    Biophys J; 2007 Mar; 92(6):1878-90. PubMed ID: 17208976
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Surface Modification of Nanopores in an Anodic Aluminum Oxide Membrane through Dopamine-Assisted Codeposition with a Zwitterionic Polymer.
    Chu CW; Tsai CH
    Langmuir; 2024 Mar; 40(10):5245-5254. PubMed ID: 38408434
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computational modeling of ion transport through nanopores.
    Modi N; Winterhalter M; Kleinekathöfer U
    Nanoscale; 2012 Oct; 4(20):6166-80. PubMed ID: 23198289
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rapid screening of nanopore candidates in nanoporous single-layer graphene for selective separations using molecular visualization and interatomic potentials.
    Bondaz L; Chow CM; Karnik R
    J Chem Phys; 2021 May; 154(18):184111. PubMed ID: 34241041
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spatial structure of disordered proteins dictates conductance and selectivity in nuclear pore complex mimics.
    Ananth AN; Mishra A; Frey S; Dwarkasing A; Versloot R; van der Giessen E; Görlich D; Onck P; Dekker C
    Elife; 2018 Feb; 7():. PubMed ID: 29442997
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Water in Nanopores and Biological Channels: A Molecular Simulation Perspective.
    Lynch CI; Rao S; Sansom MSP
    Chem Rev; 2020 Sep; 120(18):10298-10335. PubMed ID: 32841020
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transport of hydrated nitrate and nitrite ions through graphene nanopores in aqueous medium.
    Yadav S; Chandra A
    J Comput Chem; 2020 Jul; 41(20):1850-1858. PubMed ID: 32500955
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tuning Pore Size in Graphene in the Angstrom Regime for Highly Selective Ion-Ion Separation.
    Zhao K; Lee WC; Rezaei M; Chi HY; Li S; Villalobos LF; Hsu KJ; Zhang Y; Wang FC; Agrawal KV
    ACS Nano; 2024 Feb; 18(7):5571-80. PubMed ID: 38320296
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A molecular dynamics study of a fully zwitterionic copolymer/ionic liquid-based electrolyte: Li
    C Lourenço T; Ebadi M; J Panzer M; Brandell D; T Costa L
    J Comput Chem; 2021 Sep; 42(23):1689-1703. PubMed ID: 34128552
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of effective polarization on ion and water interactions within a biomimetic nanopore.
    Phan LX; Lynch CI; Crain J; Sansom MSP; Tucker SJ
    Biophys J; 2022 Jun; 121(11):2014-2026. PubMed ID: 35527400
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Two-dimensional nanopores and nanoporous membranes for ion and molecule transport.
    Danda G; Drndić M
    Curr Opin Biotechnol; 2019 Feb; 55():124-133. PubMed ID: 30321759
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vibrational energy transfer: an angstrom molecular ruler in studies of ion pairing and clustering in aqueous solutions.
    Chen H; Bian H; Li J; Wen X; Zhang Q; Zhuang W; Zheng J
    J Phys Chem B; 2015 Mar; 119(12):4333-49. PubMed ID: 25679402
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mesoscale simulations of biomolecular transport through nanofilters with tapered and cylindrical geometries.
    Ileri N; Létant SE; Palazoglu A; Stroeve P; Tringe JW; Faller R
    Phys Chem Chem Phys; 2012 Nov; 14(43):15066-77. PubMed ID: 23034638
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Controlling the Mobility of Ionic Liquids in the Nanopores of MOFs by Adjusting the Pore Size: From Conduction Collapse by Mutual Pore Blocking to Unhindered Ion Transport.
    Zhang Z; Liu M; Li C; Wenzel W; Heinke L
    Small; 2022 Sep; 18(39):e2200602. PubMed ID: 36002338
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The importance of dehydration in determining ion transport in narrow pores.
    Richards LA; Schäfer AI; Richards BS; Corry B
    Small; 2012 Jun; 8(11):1701-9. PubMed ID: 22434668
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioinspired graphene nanopores with voltage-tunable ion selectivity for Na(+) and K(+).
    He Z; Zhou J; Lu X; Corry B
    ACS Nano; 2013 Nov; 7(11):10148-57. PubMed ID: 24151957
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Slit pores preferred over cylindrical pores for high selectivity in biomolecular filtration.
    Feinberg BJ; Hsiao JC; Park J; Zydney AL; Fissell WH; Roy S
    J Colloid Interface Sci; 2018 May; 517():176-181. PubMed ID: 29425954
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantifying barriers to monovalent anion transport in narrow non-polar pores.
    Richards LA; Schäfer AI; Richards BS; Corry B
    Phys Chem Chem Phys; 2012 Sep; 14(33):11633-8. PubMed ID: 22821005
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Diameter dependence of transport through nuclear pore complex mimics studied using optical nanopores.
    Klughammer N; Barth A; Dekker M; Fragasso A; Onck PR; Dekker C
    Elife; 2024 Feb; 12():. PubMed ID: 38376900
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ionic selectivity and filtration from fragmented dehydration in multilayer graphene nanopores.
    Sahu S; Zwolak M
    Nanoscale; 2017 Aug; 9(32):11424-11428. PubMed ID: 28767109
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.