These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38656271)

  • 1. Average collision velocity of single yeast cells during electrochemically induced impacts.
    Lutkenhaus JA; Ahmed JU; Hasan M; Prosser DC; Alvarez JC
    Analyst; 2024 May; 149(11):3214-3223. PubMed ID: 38656271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Savitzky-Golay processing and bidimensional plotting of current-time signals from stochastic blocking electrochemistry to analyze mixtures of rod-shaped bacteria.
    Tubbs A; Ahmed JU; Christopher J; Alvarez JC
    Anal Methods; 2024 Oct; 16(38):6570-6576. PubMed ID: 39234687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Electroosmotic Flow on Stochastic Collisions at Ultramicroelectrodes.
    Thorgaard SN; Jenkins S; Tarach AR
    Anal Chem; 2020 Sep; 92(18):12663-12669. PubMed ID: 32809815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stochastic Electrochemical Cytometry of Human Platelets via a Particle Collision Approach.
    Lee J; Gerelkhuu Z; Song J; Seol KH; Kim BK; Chang J
    ACS Sens; 2019 Dec; 4(12):3248-3256. PubMed ID: 31680513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical Detection of Single Phospholipid Vesicle Collisions at a Pt Ultramicroelectrode.
    Lebègue E; Anderson CM; Dick JE; Webb LJ; Bard AJ
    Langmuir; 2015 Oct; 31(42):11734-9. PubMed ID: 26474107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observation of Single-Protein and DNA Macromolecule Collisions on Ultramicroelectrodes.
    Dick JE; Renault C; Bard AJ
    J Am Chem Soc; 2015 Jul; 137(26):8376-9. PubMed ID: 26108405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pt Nanoparticle Collisions Detected by Electrocatalytic Amplification and Atomic Force Microscopy Imaging: Nanoparticle Collision Frequency, Adsorption, and Random Distribution at an Ultramicroelectrode Surface.
    Ortiz-Ledón CA; Zoski CG
    Anal Chem; 2017 Jun; 89(12):6424-6431. PubMed ID: 28541030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Situ Measurement of the Size Distribution and Concentration of Insulating Particles by Electrochemical Collision on Hemispherical Ultramicroelectrodes.
    Deng Z; Elattar R; Maroun F; Renault C
    Anal Chem; 2018 Nov; 90(21):12923-12929. PubMed ID: 30284818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Single-Particle Collision Electrochemistry at Polysulfide-Functionalized Microelectrodes for SARS-CoV-2 Detection.
    Liu J; Jiang Y; Wen W; Zhang X; Wu Z; Wang S
    ACS Sens; 2023 May; 8(5):2011-2020. PubMed ID: 37083364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of the redox indicator reaction on single-nanoparticle collisions at mercury- and bismuth-modified Pt ultramicroelectrodes.
    Dasari R; Walther B; Robinson DA; Stevenson KJ
    Langmuir; 2013 Dec; 29(48):15100-6. PubMed ID: 24188022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-Nanoparticle Electrochemistry through Immobilization and Collision.
    Anderson TJ; Zhang B
    Acc Chem Res; 2016 Nov; 49(11):2625-2631. PubMed ID: 27730817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of diffusion-controlled stochastic events of iridium oxide single nanoparticle collisions by scanning electrochemical microscopy.
    Kwon SJ; Bard AJ
    J Am Chem Soc; 2012 Apr; 134(16):7102-8. PubMed ID: 22452267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Various Current Responses of Single Silver Nanoparticle Collisions on a Gold Ultramicroelectrode Depending on the Collision Conditions.
    Mun SK; Lee S; Kim DY; Kwon SJ
    Chem Asian J; 2017 Sep; 12(18):2434-2440. PubMed ID: 28662286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical detection of single microbeads manipulated by optical tweezers in the vicinity of ultramicroelectrodes.
    Suraniti E; Kanoufi F; Gosse C; Zhao X; Dimova R; Pouligny B; Sojic N
    Anal Chem; 2013 Oct; 85(19):8902-9. PubMed ID: 24020821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemiluminescence observing the surface features of Ru-doped silica nanoparticles based on nanoparticle-ultramicroelectrode collision.
    Lv X; Li M; Guo Z; Zheng X
    Luminescence; 2019 May; 34(3):334-340. PubMed ID: 30734468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of Collisions and Adsorption in the Stochastic Electrochemistry of Emulsion Microdroplets.
    Ahmed JU; Lutkenhaus JA; Alam MS; Marshall I; Paul DK; Alvarez JC
    Anal Chem; 2021 Jun; 93(22):7993-8001. PubMed ID: 34043322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of Glass-Insulated Ultramicrometer to Submicrometer Carbon Fiber Electrodes to Support a Single Nanoparticle and Nanoparticle Ensembles in Electrocatalytic Investigations.
    Ortiz-Ledón CA; Zoski CG
    Anal Chem; 2018 Nov; 90(21):12616-12624. PubMed ID: 30299083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stochastic Particle Approach Electrochemistry (SPAE): Estimating Size, Drift Velocity, and Electric Force of Insulating Particles.
    Chung HJ; Lee J; Hwang J; Seol KH; Kim KM; Song J; Chang J
    Anal Chem; 2020 Sep; 92(18):12226-12234. PubMed ID: 32786447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical detection of a single cytomegalovirus at an ultramicroelectrode and its antibody anchoring.
    Dick JE; Hilterbrand AT; Boika A; Upton JW; Bard AJ
    Proc Natl Acad Sci U S A; 2015 Apr; 112(17):5303-8. PubMed ID: 25870261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunneling ultramicroelectrode: nanoelectrodes and nanoparticle collisions.
    Kim J; Kim BK; Cho SK; Bard AJ
    J Am Chem Soc; 2014 Jun; 136(23):8173-6. PubMed ID: 24857267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.