These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38656329)

  • 1. Optically monitoring the microenvironment of a hydrophobic cargo in amphiphilic nanogels: influence of network composition on loading and release.
    López-Iglesias C; Markovina A; Nirmalananthan-Budau N; Resch-Genger U; Klinger D
    Nanoscale; 2024 May; 16(19):9525-9535. PubMed ID: 38656329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of Nanogel Amphiphilicity on Dermal Delivery: Balancing Surface Hydrophobicity and Network Rigidity.
    Gruber A; Joshi AA; Graff P; Cuéllar-Camacho JL; Hedtrich S; Klinger D
    Biomacromolecules; 2022 Jan; 23(1):112-127. PubMed ID: 34874701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amphiphilic nanogels: influence of surface hydrophobicity on protein corona, biocompatibility and cellular uptake.
    Bewersdorff T; Gruber A; Eravci M; Dumbani M; Klinger D; Haase A
    Int J Nanomedicine; 2019; 14():7861-7878. PubMed ID: 31576128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amphiphilic Nanogels: Fuzzy Spheres with a Pseudo-Periodic Internal Structure.
    Thünemann AF; Gruber A; Klinger D
    Langmuir; 2020 Sep; 36(37):10979-10988. PubMed ID: 32854501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual-reactive nanogels for orthogonal functionalization of hydrophilic shell and amphiphilic network.
    Gruber A; Navarro L; Klinger D
    Soft Matter; 2022 Apr; 18(14):2858-2871. PubMed ID: 35348179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective Release of Hydrophobic and Hydrophilic Cargos from Multi-Stimuli-Responsive Nanogels.
    Cao Z; Zhou X; Wang G
    ACS Appl Mater Interfaces; 2016 Oct; 8(42):28888-28896. PubMed ID: 27700021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzyme and Thermal Dual Responsive Amphiphilic Polymer Core-Shell Nanoparticle for Doxorubicin Delivery to Cancer Cells.
    Kashyap S; Singh N; Surnar B; Jayakannan M
    Biomacromolecules; 2016 Jan; 17(1):384-98. PubMed ID: 26652038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BODIPY-loaded polymer nanoparticles: chemical structure of cargo defines leakage from nanocarrier in living cells.
    Trofymchuk K; Valanciunaite J; Andreiuk B; Reisch A; Collot M; Klymchenko AS
    J Mater Chem B; 2019 Aug; 7(34):5199-5210. PubMed ID: 31364614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formulation of Acid-Sensitive Micelles for Delivery of Cabazitaxel into Prostate Cancer Cells.
    Aydin O; Youssef I; Yuksel Durmaz Y; Tiruchinapally G; ElSayed ME
    Mol Pharm; 2016 Apr; 13(4):1413-29. PubMed ID: 26977718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-pot polyglycidol nanogels via liposome master templates for dual drug delivery.
    Lockhart JN; Beezer DB; Stevens DM; Spears BR; Harth E
    J Control Release; 2016 Dec; 244(Pt B):366-374. PubMed ID: 27411978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loading and release of small hydrophobic molecules in multilayer films based on amphiphilic polysaccharides.
    Guyomard A; Nysten B; Muller G; Glinel K
    Langmuir; 2006 Feb; 22(5):2281-7. PubMed ID: 16489818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-responsive nanogels containing motifs of ortho ester, oligo(ethylene glycol) and disulfide linkage as carriers of hydrophobic anti-cancer drugs.
    Qiao ZY; Zhang R; Du FS; Liang DH; Li ZC
    J Control Release; 2011 May; 152(1):57-66. PubMed ID: 21392550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HPMA-based block copolymers promote differential drug delivery kinetics for hydrophobic and amphiphilic molecules.
    Tomcin S; Kelsch A; Staff RH; Landfester K; Zentel R; Mailänder V
    Acta Biomater; 2016 Apr; 35():12-22. PubMed ID: 26772526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nile-Red-nanoclay hybrids: red emissive optical probes for use in aqueous dispersion.
    Felbeck T; Behnke T; Hoffmann K; Grabolle M; Lezhnina MM; Kynast UH; Resch-Genger U
    Langmuir; 2013 Sep; 29(36):11489-97. PubMed ID: 23941582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the intracellular release mechanism of hydrophobic cargo and its relation to the biodegradation behavior of mesoporous silica nanocarriers.
    von Haartman E; Lindberg D; Prabhakar N; Rosenholm JM
    Eur J Pharm Sci; 2016 Dec; 95():17-27. PubMed ID: 27267567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amphiphilic block copolymer NPs obtained by coupling ricinoleic acid/sebacic acids and mPEG: Synthesis, characterization, and controlled release of paclitaxel.
    Zhou S; Sun W; Zhai Y
    J Biomater Sci Polym Ed; 2018 Dec; 29(18):2201-2217. PubMed ID: 30285542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functionalized polymeric nanogels with pH-sensitive benzoic-imine cross-linkages designed as vehicles for indocyanine green delivery.
    Liao SC; Ting CW; Chiang WH
    J Colloid Interface Sci; 2020 Mar; 561():11-22. PubMed ID: 31812857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Layered Double Hydroxides as an Intercalation System for Hydrophobic Molecules.
    Li L; Sevciuc A; Rijn PV
    Nanomaterials (Basel); 2023 Dec; 13(24):. PubMed ID: 38133041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic anomalies in the interactions of Nile red with microalgae.
    Pick U; Rachutin-Zalogin T
    J Microbiol Methods; 2012 Feb; 88(2):189-96. PubMed ID: 22062087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amphiphilized poly(ethyleneimine) nanoparticles: a versatile multi-cargo carrier with enhanced tumor-homing efficiency and biocompatibility.
    Park S; Jeong K; Lee E; Lee JH; Yhee JY; Singh A; Koh J; Lee S; Kim K; Chan Kwon I; Park CR; Kim J; Kim S
    J Mater Chem B; 2015 Jan; 3(2):198-206. PubMed ID: 32261940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.