These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 38656442)

  • 21. Elemental Precursor Solution Processed (Cu
    Qi Y; Tian Q; Meng Y; Kou D; Zhou Z; Zhou W; Wu S
    ACS Appl Mater Interfaces; 2017 Jun; 9(25):21243-21250. PubMed ID: 28586190
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Band-gap-graded Cu2ZnSn(S1-x,Se(x))4 solar cells fabricated by an ethanol-based, particulate precursor ink route.
    Woo K; Kim Y; Yang W; Kim K; Kim I; Oh Y; Kim JY; Moon J
    Sci Rep; 2013 Oct; 3():3069. PubMed ID: 24166151
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Toward High Efficient Cu
    Wang Z; Meng R; Guo H; Sun Y; Liu Y; Zhang H; Cao Z; Dong J; Xu X; Liang G; Lou L; Li D; Meng Q; Zhang Y
    Small; 2023 Jun; 19(22):e2300634. PubMed ID: 36855059
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhance the Performance of CZTSSe Solar Cells Through Inhibiting the Cu
    Wang L; SiQin L; Wang Y; Li S; Xin W; Guo J; Liu R; Luan H; Zhu C
    Small; 2024 Dec; 20(50):e2405908. PubMed ID: 39359029
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Device Characteristics of Band gap Tailored 10.04% Efficient CZTSSe Solar Cells Sprayed from Water-Based Solution.
    Enkhbat T; Kim S; Kim J
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):36735-36741. PubMed ID: 31532194
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Segmented Control of Selenization Environment for High-Quality Cu
    Jian Y; Han L; Kong X; Xie T; Kou D; Zhou W; Zhou Z; Yuan S; Meng Y; Qi Y; Liang G; Zhang X; Zheng Z; Wu S
    Small Methods; 2024 May; ():e2400041. PubMed ID: 38766987
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cadmium-Free Kesterite Thin-Film Solar Cells with High Efficiency Approaching 12.
    Ahmad N; Zhao Y; Ye F; Zhao J; Chen S; Zheng Z; Fan P; Yan C; Li Y; Su Z; Zhang X; Liang G
    Adv Sci (Weinh); 2023 Sep; 10(26):e2302869. PubMed ID: 37391392
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhancing the Performance of Aqueous Solution-Processed Cu
    He W; Sui Y; Zeng F; Wang Z; Wang F; Yao B; Yang L
    Nanomaterials (Basel); 2020 Jun; 10(7):. PubMed ID: 32605150
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Suppressing Element Inhomogeneity Enables 14.9% Efficiency CZTSSe Solar Cells.
    Li Y; Cui C; Wei H; Shao Z; Wu Z; Zhang S; Wang X; Pang S; Cui G
    Adv Mater; 2024 Jun; 36(25):e2400138. PubMed ID: 38402444
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Significantly Improving the Crystal Growth of a Cu
    Shi X; Wang Y; Yu H; Wang G; Huang L; Pan D
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):41590-41595. PubMed ID: 32814424
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Suppressing interface recombination in CZTSSe solar cells by simple selenization with synchronous interface gradient doping.
    Cui XP; Ma Q; Zhou WH; Kou DX; Zhou ZJ; Meng YN; Qi YF; Yuan SJ; Han LT; Wu SX
    Nanoscale; 2022 Dec; 15(1):185-194. PubMed ID: 36475511
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Revealing the reason for enhanced CZTSSe device performance after Ag heavily doped into absorber surface.
    Wang S; Shen Z; Liu Y; Zhang Y
    J Chem Phys; 2024 Mar; 160(9):. PubMed ID: 38445737
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tellurium Doping Inducing Defect Passivation for Highly Effective Antimony Selenide Thin Film Solar Cell.
    Chen G; Li X; Abbas M; Fu C; Su Z; Tang R; Chen S; Fan P; Liang G
    Nanomaterials (Basel); 2023 Mar; 13(7):. PubMed ID: 37049333
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Roughness-Controlled Cu
    Cheon KB; Hwang SK; Seo SW; Park JH; Park MA; Kim JY
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):24088-24095. PubMed ID: 31199618
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Achieving Low
    Karade V; Choi E; Gang MG; Yoo H; Lokhande A; Babar P; Jang JS; Seidel J; Yun JS; Park J; Kim JH
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):429-437. PubMed ID: 33393763
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kesterite Solar Cells: Insights into Current Strategies and Challenges.
    He M; Yan C; Li J; Suryawanshi MP; Kim J; Green MA; Hao X
    Adv Sci (Weinh); 2021 May; 8(9):2004313. PubMed ID: 33977066
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Self-Organized Back Surface Field to Improve the Performance of Cu
    Song Y; Yao B; Li Y; Ding Z; Sun H; Zhang Z; Zhang L; Zhao H
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):31851-31859. PubMed ID: 31313903
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selenization of Cu
    Wang X; Xie Y; Bateer B; Pan K; Jiao Y; Xiong N; Wang S; Fu H
    ACS Appl Mater Interfaces; 2017 Nov; 9(43):37662-37670. PubMed ID: 29019395
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Study on the Effects of Selenization Temperature on the Properties of Na-Doped Cu
    Wang Z; Jiang D; Zeng F; Sui Y
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578751
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synergistic Crystallization Modulation and Defects Passivation in Kesterite via Anion-Coordinate Precursor Engineering for Efficient Solar Cells.
    Wang L; Chu L; Zhou Z; Zhou W; Kou D; Meng Y; Qi Y; Yuan S; Han L; Yang G; Zhang Z; Zheng Z; Wu S
    Adv Sci (Weinh); 2024 Sep; 11(35):e2405016. PubMed ID: 39031982
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.