These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38656443)

  • 1. Dynamical properties of solid and hydrated collagen: Insight from nuclear magnetic resonance relaxometry.
    Masiewicz E; Ullah F; Mieloch A; Godlewski J; Kruk D
    J Chem Phys; 2024 Apr; 160(16):. PubMed ID: 38656443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slow dynamics of solid proteins - Nuclear magnetic resonance relaxometry versus dielectric spectroscopy.
    Kruk D; Masiewicz E; Wojciechowski M; Florek-Wojciechowska M; Broche LM; Lurie DJ
    J Magn Reson; 2020 May; 314():106721. PubMed ID: 32276108
    [No Abstract]   [Full Text] [Related]  

  • 3. Self-diffusion studies by intra- and inter-molecular spin-lattice relaxometry using field-cycling: Liquids, plastic crystals, porous media, and polymer segments.
    Kimmich R; Fatkullin N
    Prog Nucl Magn Reson Spectrosc; 2017 Aug; 101():18-50. PubMed ID: 28844220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water Dynamics in Highly Concentrated Protein Systems-Insight from Nuclear Magnetic Resonance Relaxometry.
    Kruk D; Kasparek A; Masiewicz E; Kolodziejski K; Cybulski R; Nowak B
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835511
    [No Abstract]   [Full Text] [Related]  

  • 5. Dynamics of Solid Proteins by Means of Nuclear Magnetic Resonance Relaxometry.
    Kruk D; Masiewicz E; Borkowska AM; Rochowski P; Fries PH; Broche LM; Lurie DJ
    Biomolecules; 2019 Oct; 9(11):. PubMed ID: 31731514
    [No Abstract]   [Full Text] [Related]  

  • 6. Mechanism of 1H-14N cross-relaxation in immobilized proteins.
    Sunde EP; Halle B
    J Magn Reson; 2010 Apr; 203(2):257-73. PubMed ID: 20163976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water molecule contributions to proton spin-lattice relaxation in rotationally immobilized proteins.
    Goddard YA; Korb JP; Bryant RG
    J Magn Reson; 2009 Jul; 199(1):68-74. PubMed ID: 19394883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extreme-values statistics and dynamics of water at protein interfaces.
    Korb JP; Goddard Y; Pajski J; Diakova G; Bryant RG
    J Phys Chem B; 2011 Nov; 115(44):12845-58. PubMed ID: 21932852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water Dynamics in Whey-Protein-Based Composite Hydrogels by Means of NMR Relaxometry.
    Ozel B; Kruk D; Wojciechowski M; Osuch M; Oztop MH
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34575838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 1H relaxation enhancement induced by nanoparticles in solutions: influence of magnetic properties and diffusion.
    Kruk D; Korpała A; Taheri SM; Kozłowski A; Förster S; Rössler EA
    J Chem Phys; 2014 May; 140(17):174504. PubMed ID: 24811643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Translational diffusion in paramagnetic liquids by 1H NMR relaxometry: nitroxide radicals in solution.
    Kruk D; Korpała A; Kubica A; Meier R; Rössler EA; Moscicki J
    J Chem Phys; 2013 Jan; 138(2):024506. PubMed ID: 23320703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [NMR-relaxation in hydrated collagen from the spotted dogfish]].
    Rodin VV
    Biofizika; 2005; 50(2):223-30. PubMed ID: 15856978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of Water Dynamics in Hyaluronic Dermal Fillers Revealed by Nuclear Magnetic Resonance Relaxometry.
    Kruk D; Rochowski P; Masiewicz E; Wilczynski S; Wojciechowski M; Broche LM; Lurie DJ
    Chemphyschem; 2019 Nov; 20(21):2816-2822. PubMed ID: 31532873
    [No Abstract]   [Full Text] [Related]  

  • 14. Dynamic of binary molecular systems-Advantages and limitations of NMR relaxometry.
    Leal Auccaise AC; Masiewicz E; Kolodziejski K; Kruk D
    J Chem Phys; 2024 Apr; 160(14):. PubMed ID: 38606737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water and backbone dynamics in a hydrated protein.
    Diakova G; Goddard YA; Korb JP; Bryant RG
    Biophys J; 2010 Jan; 98(1):138-46. PubMed ID: 20085726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frequency dependence of magnetic resonance spin-lattice relaxation of protons in biological materials.
    Fullerton GD; Cameron IL; Ord VA
    Radiology; 1984 Apr; 151(1):135-8. PubMed ID: 6322223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overhauser Dynamic Nuclear Polarization for the Study of Hydration Dynamics, Explained.
    Franck JM; Han S
    Methods Enzymol; 2019; 615():131-175. PubMed ID: 30638529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model for the interpretation of nuclear magnetic resonance relaxometry of hydrated porous silicate materials.
    Faux DA; Cachia SH; McDonald PJ; Bhatt JS; Howlett NC; Churakov SV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032311. PubMed ID: 25871114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 1H relaxation dispersion in solutions of nitroxide radicals: effects of hyperfine interactions with 14N and 15N nuclei.
    Kruk D; Korpała A; Kowalewski J; Rössler EA; Moscicki J
    J Chem Phys; 2012 Jul; 137(4):044512. PubMed ID: 22852636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear-magnetic-resonance relaxation due to the translational diffusion of fluid confined to quasi-two-dimensional pores.
    Faux DA; McDonald PJ; Howlett NC
    Phys Rev E; 2017 Mar; 95(3-1):033116. PubMed ID: 28415296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.