These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 38656460)
41. Solid Electrolyte Interface Film-Forming and Surface-Stabilizing Bifunctional 1,2-Bis((trimethylsilyl)oxy) Benzene as Novel Electrolyte Additive for Silicon-Based Lithium-Ion Batteries. Cheng W; Li N; Liu J; Ma S; Gao X ACS Appl Mater Interfaces; 2023 Nov; 15(44):51025-51035. PubMed ID: 37877787 [TBL] [Abstract][Full Text] [Related]
42. Advances in physical vapor deposited silicon/carbon based anode materials for Li-ion batteries. El Omari G; El Kindoussy K; Aqil M; Dahbi M; Alami J; Makha M Heliyon; 2024 May; 10(9):e30431. PubMed ID: 38726107 [TBL] [Abstract][Full Text] [Related]
43. Solutions for the problems of silicon-carbon anode materials for lithium-ion batteries. Liu X; Zhu X; Pan D R Soc Open Sci; 2018 Jun; 5(6):172370. PubMed ID: 30110426 [TBL] [Abstract][Full Text] [Related]
44. Interlayer Engineering and Prelithiation: Empowering Si Anodes for Low-Pressure-Operating All-Solid-State Batteries. Jun S; Lee G; Song YB; Lim H; Baeck KH; Lee ES; Kim JY; Kim DW; Park JH; Jung YS Small; 2024 Jun; 20(25):e2309437. PubMed ID: 38221689 [TBL] [Abstract][Full Text] [Related]
45. Utilizing van der Waals Slippery Interfaces to Enhance the Electrochemical Stability of Silicon Film Anodes in Lithium-Ion Batteries. Basu S; Suresh S; Ghatak K; Bartolucci SF; Gupta T; Hundekar P; Kumar R; Lu TM; Datta D; Shi Y; Koratkar N ACS Appl Mater Interfaces; 2018 Apr; 10(16):13442-13451. PubMed ID: 29620865 [TBL] [Abstract][Full Text] [Related]
46. Over-Lithiation Regulation of Silicon-Based Anodes for High-Energy Lithium-Ion Batteries. Wang X; Tan Y; Wang W; Sun Y ChemSusChem; 2024 Jun; ():e202400971. PubMed ID: 38877868 [TBL] [Abstract][Full Text] [Related]
47. Surface SiO Schnabel M; Harvey SP; Arca E; Stetson C; Teeter G; Ban C; Stradins P ACS Appl Mater Interfaces; 2020 Jun; 12(24):27017-27028. PubMed ID: 32407075 [TBL] [Abstract][Full Text] [Related]
48. Undervalued Roles of Binder in Modulating Solid Electrolyte Interphase Formation of Silicon-Based Anode Materials. Han L; Liu T; Sheng O; Liu Y; Wang Y; Nai J; Zhang L; Tao X ACS Appl Mater Interfaces; 2021 Sep; 13(38):45139-45148. PubMed ID: 34543001 [TBL] [Abstract][Full Text] [Related]
49. Identification of the Solid Electrolyte Interface on the Si/C Composite Anode with FEC as the Additive. Li Q; Liu X; Han X; Xiang Y; Zhong G; Wang J; Zheng B; Zhou J; Yang Y ACS Appl Mater Interfaces; 2019 Apr; 11(15):14066-14075. PubMed ID: 30801174 [TBL] [Abstract][Full Text] [Related]
50. An interconnected and scalable hollow Si-C nanospheres/graphite composite for high-performance lithium-ion batteries. Gao J; Zuo S; Liu H; Jiang Q; Wang C; Yin H; Wang Z; Wang J J Colloid Interface Sci; 2022 Oct; 624():555-563. PubMed ID: 35688095 [TBL] [Abstract][Full Text] [Related]
51. Cross-Linked Sodium Alginate-Sodium Borate Hybrid Binders for High-Capacity Silicon Anodes in Lithium-Ion Batteries. Li J; Hu X; Zhao H; Ren Y; Huang X Langmuir; 2022 Jan; 38(1):402-410. PubMed ID: 34965137 [TBL] [Abstract][Full Text] [Related]
52. Constructing a Reinforced and Gradient Solid Electrolyte Interphase on Si Nanoparticles by In-Situ Thiol-Ene Click Reaction for Long Cycling Lithium-Ion Batteries. Zhao L; Zhang D; Huang Y; Lin K; Chen L; Lv W; He YB; Kang F Small; 2021 Oct; 17(40):e2102316. PubMed ID: 34494366 [TBL] [Abstract][Full Text] [Related]
53. Chamber-confined silicon-carbon nanofiber composites for prolonged cycling life of Li-ion batteries. Fu K; Lu Y; Dirican M; Chen C; Yanilmaz M; Shi Q; Bradford PD; Zhang X Nanoscale; 2014 Jul; 6(13):7489-95. PubMed ID: 24882561 [TBL] [Abstract][Full Text] [Related]
54. Enhanced stability and kinetic performance of sandwich Si anode constructed by carbon nanotube and silicon carbide for lithium-ion battery. Di F; Gu X; Chu Y; Li L; Geng X; Sun C; Zhou W; Zhang H; Zhao H; Tao L; Jiang G; Zhang X; An B J Colloid Interface Sci; 2024 Sep; 670():204-214. PubMed ID: 38761573 [TBL] [Abstract][Full Text] [Related]
55. Silver-Assisted Chemical Etching for the Fabrication of Porous Silicon N-Doped Nanohollow Carbon Spheres Composite Anodes to Enhance Electrochemical Performance. Zhang Z; Zhang Y; Chen W; Zhang X; Yu L; Guan Z Materials (Basel); 2024 Jun; 17(13):. PubMed ID: 38998272 [TBL] [Abstract][Full Text] [Related]
56. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Liu N; Lu Z; Zhao J; McDowell MT; Lee HW; Zhao W; Cui Y Nat Nanotechnol; 2014 Mar; 9(3):187-92. PubMed ID: 24531496 [TBL] [Abstract][Full Text] [Related]
57. Rational Design of Ion-Conductive Layer on Si Anode Enables Superior-Stable Lithium-Ion Batteries. Wang Z; Yao M; Luo H; Xu C; Tian H; Wang Q; Wu H; Zhang Q; Wu Y Small; 2024 Feb; 20(5):e2306428. PubMed ID: 37759404 [TBL] [Abstract][Full Text] [Related]
58. Considering Critical Factors of Li-rich Cathode and Si Anode Materials for Practical Li-ion Cell Applications. Ko M; Oh P; Chae S; Cho W; Cho J Small; 2015 Sep; 11(33):4058-73. PubMed ID: 26108922 [TBL] [Abstract][Full Text] [Related]
59. Liu L; Zuo X; Cheng Y; Xia Y ACS Appl Mater Interfaces; 2022 Jun; 14(25):28748-28759. PubMed ID: 35714065 [TBL] [Abstract][Full Text] [Related]
60. High-Performance Microsized Si Anodes for Lithium-Ion Batteries: Insights into the Polymer Configuration Conversion Mechanism. Wang Q; Zhu M; Chen G; Dudko N; Li Y; Liu H; Shi L; Wu G; Zhang D Adv Mater; 2022 Apr; 34(16):e2109658. PubMed ID: 35172027 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]