These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38656495)

  • 1. Indophenol Blue Colorimetric Method to Determine Grain Protein Content of Cereal Plants.
    Huang C; Gao M; Luo H; Xu Y
    Methods Mol Biol; 2024; 2787():257-263. PubMed ID: 38656495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reliable and inexpensive colorimetric method for determining protein-bound tryptophan in maize kernels.
    Nurit E; Tiessen A; Pixley KV; Palacios-Rojas N
    J Agric Food Chem; 2009 Aug; 57(16):7233-8. PubMed ID: 19624133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic Engineering of Maize (Zea mays L.) with Improved Grain Nutrients.
    Guo X; Duan X; Wu Y; Cheng J; Zhang J; Zhang H; Li B
    J Agric Food Chem; 2018 Feb; 66(7):1670-1677. PubMed ID: 29394054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implication of Modified Chemical Profiles of Different Seed Proteins through Heat-Related Processing to Protein Nutrition and Metabolic Characteristics in Ruminant Systems.
    Ying Y; Feng X; Zhang W; Yu P
    J Agric Food Chem; 2020 Apr; 68(17):4939-4945. PubMed ID: 32227938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural Characterization of Lignin from Maize ( Zea mays L.) Fibers: Evidence for Diferuloylputrescine Incorporated into the Lignin Polymer in Maize Kernels.
    Del Río JC; Rencoret J; Gutiérrez A; Kim H; Ralph J
    J Agric Food Chem; 2018 May; 66(17):4402-4413. PubMed ID: 29665690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling lipid accumulation in cereal grains.
    Barthole G; Lepiniec L; Rogowsky PM; Baud S
    Plant Sci; 2012 Apr; 185-186():33-9. PubMed ID: 22325864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling postsilking nitrogen fluxes in maize (Zea mays) using 15N-labelling field experiments.
    Gallais A; Coque M; Quilléré I; Prioul JL; Hirel B
    New Phytol; 2006; 172(4):696-707. PubMed ID: 17096795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship of source and sink in determining kernel composition of maize.
    Seebauer JR; Singletary GW; Krumpelman PM; Ruffo ML; Below FE
    J Exp Bot; 2010; 61(2):511-9. PubMed ID: 19917600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole for determining cysteine and cystine in cereal and legume seeds.
    Akinyele AF; Okogun JI; Faboya OP
    J Agric Food Chem; 1999 Jun; 47(6):2303-7. PubMed ID: 10794626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maize development and grain quality are differentially affected by mycorrhizal fungi and a growth-promoting pseudomonad in the field.
    Berta G; Copetta A; Gamalero E; Bona E; Cesaro P; Scarafoni A; D'Agostino G
    Mycorrhiza; 2014 Apr; 24(3):161-70. PubMed ID: 23995918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of high temperature after pollination on physicochemical properties of waxy maize flour during grain development.
    Lu D; Cai X; Yan F; Sun X; Wang X; Lu W
    J Sci Food Agric; 2014 May; 94(7):1416-21. PubMed ID: 24122670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aggregation states of alcohol-soluble storage proteins of barley, rye, wheat and maize.
    Field JM; Shewry PR; Miflin BJ
    J Sci Food Agric; 1983 Apr; 34(4):362-9. PubMed ID: 6101252
    [No Abstract]   [Full Text] [Related]  

  • 13. Timing and rate of nitrogen application influence grain quality and yield in maize planted at high and low densities.
    Amanullah ; Shah P
    J Sci Food Agric; 2010 Jan; 90(1):21-9. PubMed ID: 20364482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear magnetic resonance relaxation characterisation of water status of developing grains of maize (Zea mays L.) grown at different nitrogen levels.
    Krishnan P; Chopra UK; Verma AP; Joshi DK; Chand I
    J Biosci Bioeng; 2014 Apr; 117(4):512-8. PubMed ID: 24239026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of rumen ammonia concentration on the rumen degradation rates of barley and maize.
    Odle J; Schaefer DM
    Br J Nutr; 1987 Jan; 57(1):127-38. PubMed ID: 3801378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrogen (protein) determination in single seeds by nuclear reactions.
    Policroniades R; Moreno E; Murillo G; Varela A
    Appl Radiat Isot; 2019 Apr; 146():33-39. PubMed ID: 30753982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive phenotypic analysis and quantitative trait locus identification for grain mineral concentration, content, and yield in maize (Zea mays L.).
    Gu R; Chen F; Liu B; Wang X; Liu J; Li P; Pan Q; Pace J; Soomro AA; Lübberstedt T; Mi G; Yuan L
    Theor Appl Genet; 2015 Sep; 128(9):1777-89. PubMed ID: 26058362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cereal seed storage proteins: structures, properties and role in grain utilization.
    Shewry PR; Halford NG
    J Exp Bot; 2002 Apr; 53(370):947-58. PubMed ID: 11912237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of Paddy Soil Ammonia Nitrogen Using Rapid Detection Kit Coupled with Microplate Reader.
    Liu X; Wu D; Abid AA; Liu Y; Zhou J; Zhang Q
    Toxics; 2022 Nov; 10(12):. PubMed ID: 36548558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative intake of white- versus orange-colored maize by Zambian children in the context of promotion of biofortified maize.
    Nuss ET; Arscott SA; Bresnahan K; Pixley KV; Rocheford T; Hotz C; Siamusantu W; Chileshe J; Tanumihardjo SA
    Food Nutr Bull; 2012 Mar; 33(1):63-71. PubMed ID: 22624299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.