These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Morph-SSL: Self-Supervision With Longitudinal Morphing for Forecasting AMD Progression From OCT Volumes. Chakravarty A; Emre T; Leingang O; Riedl S; Mai J; Scholl HPN; Sivaprasad S; Rueckert D; Lotery A; Schmidt-Erfurth U; Bogunovic H IEEE Trans Med Imaging; 2024 Sep; 43(9):3224-3239. PubMed ID: 38635383 [TBL] [Abstract][Full Text] [Related]
4. End-to-End Deep Learning Model for Predicting Treatment Requirements in Neovascular AMD From Longitudinal Retinal OCT Imaging. Romo-Bucheli D; Erfurth US; Bogunovic H IEEE J Biomed Health Inform; 2020 Dec; 24(12):3456-3465. PubMed ID: 32750929 [TBL] [Abstract][Full Text] [Related]
5. Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentation. Chaitanya K; Erdil E; Karani N; Konukoglu E Med Image Anal; 2023 Jul; 87():102792. PubMed ID: 37054649 [TBL] [Abstract][Full Text] [Related]
6. Self-supervised iterative refinement learning for macular OCT volumetric data classification. Qiu J; Sun Y Comput Biol Med; 2019 Aug; 111():103327. PubMed ID: 31302456 [TBL] [Abstract][Full Text] [Related]
7. A supervised joint multi-layer segmentation framework for retinal optical coherence tomography images using conditional random field. Chakravarty A; Sivaswamy J Comput Methods Programs Biomed; 2018 Oct; 165():235-250. PubMed ID: 30337078 [TBL] [Abstract][Full Text] [Related]
8. Spatio-temporal alterations in retinal and choroidal layers in the progression of age-related macular degeneration (AMD) in optical coherence tomography. Vogl WD; Bogunović H; Waldstein SM; Riedl S; Schmidt-Erfurth U Sci Rep; 2021 Mar; 11(1):5743. PubMed ID: 33707539 [TBL] [Abstract][Full Text] [Related]
9. UD-MIL: Uncertainty-Driven Deep Multiple Instance Learning for OCT Image Classification. Wang X; Tang F; Chen H; Luo L; Tang Z; Ran AR; Cheung CY; Heng PA IEEE J Biomed Health Inform; 2020 Dec; 24(12):3431-3442. PubMed ID: 32248132 [TBL] [Abstract][Full Text] [Related]
10. Fully automated macular pathology detection in retina optical coherence tomography images using sparse coding and dictionary learning. Sun Y; Li S; Sun Z J Biomed Opt; 2017 Jan; 22(1):16012. PubMed ID: 28114453 [TBL] [Abstract][Full Text] [Related]
11. Volumetric image classification using homogeneous decomposition and dictionary learning: A study using retinal optical coherence tomography for detecting age-related macular degeneration. Albarrak A; Coenen F; Zheng Y Comput Med Imaging Graph; 2017 Jan; 55():113-123. PubMed ID: 27507326 [TBL] [Abstract][Full Text] [Related]
12. Deep ensemble learning for automated non-advanced AMD classification using optimized retinal layer segmentation and SD-OCT scans. Moradi M; Chen Y; Du X; Seddon JM Comput Biol Med; 2023 Mar; 154():106512. PubMed ID: 36701964 [TBL] [Abstract][Full Text] [Related]
13. Classification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomography. Perdomo O; Rios H; Rodríguez FJ; Otálora S; Meriaudeau F; Müller H; González FA Comput Methods Programs Biomed; 2019 Sep; 178():181-189. PubMed ID: 31416547 [TBL] [Abstract][Full Text] [Related]
14. Self-Supervised Feature Learning and Phenotyping for Assessing Age-Related Macular Degeneration Using Retinal Fundus Images. Yellapragada B; Hornauer S; Snyder K; Yu S; Yiu G Ophthalmol Retina; 2022 Feb; 6(2):116-129. PubMed ID: 34217854 [TBL] [Abstract][Full Text] [Related]
15. The possibility of the combination of OCT and fundus images for improving the diagnostic accuracy of deep learning for age-related macular degeneration: a preliminary experiment. Yoo TK; Choi JY; Seo JG; Ramasubramanian B; Selvaperumal S; Kim DW Med Biol Eng Comput; 2019 Mar; 57(3):677-687. PubMed ID: 30349958 [TBL] [Abstract][Full Text] [Related]
16. Clinically relevant deep learning for detection and quantification of geographic atrophy from optical coherence tomography: a model development and external validation study. Zhang G; Fu DJ; Liefers B; Faes L; Glinton S; Wagner S; Struyven R; Pontikos N; Keane PA; Balaskas K Lancet Digit Health; 2021 Oct; 3(10):e665-e675. PubMed ID: 34509423 [TBL] [Abstract][Full Text] [Related]
17. Fully automated detection of retinal disorders by image-based deep learning. Li F; Chen H; Liu Z; Zhang X; Wu Z Graefes Arch Clin Exp Ophthalmol; 2019 Mar; 257(3):495-505. PubMed ID: 30610422 [TBL] [Abstract][Full Text] [Related]
18. Point based weakly semi-supervised biomarker detection with cross-scale and label assignment in retinal OCT images. Liu X; Zhu X; Zhang Y; Wang M Comput Methods Programs Biomed; 2024 Jun; 251():108229. PubMed ID: 38761413 [TBL] [Abstract][Full Text] [Related]
19. Intra- and Inter-Slice Contrastive Learning for Point Supervised OCT Fluid Segmentation. He X; Fang L; Tan M; Chen X IEEE Trans Image Process; 2022; 31():1870-1881. PubMed ID: 35139015 [TBL] [Abstract][Full Text] [Related]
20. Adaptive self-supervised learning for sequential recommendation. Sun X; Sun F; Zhang Z; Li P; Wang S Neural Netw; 2024 Nov; 179():106570. PubMed ID: 39089151 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]