These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 3865705)

  • 21. Adherence of Streptococcus sanguis to salivary mucin bound to glass.
    Stinson MW; Levine MJ; Cavese JM; Prakobphol A; Murray PA; Tabak LA; Reddy MS
    J Dent Res; 1982 Dec; 61(12):1390-3. PubMed ID: 6960040
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adherence of oral streptococci to keratinized and nonkeratinized human oral epithelial cells.
    Sklavounou A; Germaine GR
    Infect Immun; 1980 Feb; 27(2):686-9. PubMed ID: 6155336
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Streptococci and actinomyces inhibit regrowth of Streptococcus mutans on gnotobiotic rat molar teeth after chlorhexidine varnish treatment.
    van der Hoeven JS; Schaeken MJ
    Caries Res; 1995; 29(2):159-62. PubMed ID: 7728832
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A conceptual model for the co-existence of Streptococcus spp. and Actinomyces spp. in dental plaque.
    van der Hoeven JS; de Jong MH; Rogers AH; Camp PJ
    J Dent Res; 1984 Mar; 63(3):389-92. PubMed ID: 6583241
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effects of histatin-derived basic antimicrobial peptides on oral biofilms.
    Helmerhorst EJ; Hodgson R; van 't Hof W; Veerman EC; Allison C; Nieuw Amerongen AV
    J Dent Res; 1999 Jun; 78(6):1245-50. PubMed ID: 10371248
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interaction of hydroxyapatite and protein-coated hydroxyapatite with Streptococcus mutans and Streptococcus sanguis.
    Rölla G; Robrish SA; Bowen WH
    Acta Pathol Microbiol Scand B; 1977 Oct; 85B(5):341-6. PubMed ID: 602782
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrophobicity and adherence of oral streptococci after repeated subculture in vitro.
    Westergren G; Olsson J
    Infect Immun; 1983 Apr; 40(1):432-5. PubMed ID: 6832836
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The function and distribution of different fimbriae on strains of Actinomyces viscosus and Actinomyces naeslundii.
    Cisar JO; Sandberg AL; Mergenhagen SE
    J Dent Res; 1984 Mar; 63(3):393-6. PubMed ID: 6142065
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adherence of oral streptococci to hydroxyapatite in vitro via glycerol-teichoic acid.
    Bolton RW
    Arch Oral Biol; 1980; 25(2):111-4. PubMed ID: 6931558
    [No Abstract]   [Full Text] [Related]  

  • 30. Comparison of different assays for the aggregation of oral bacteria by human whole saliva.
    Koop HM; Valentijn-Benz M; Nieuw Amerongen AV; Roukema PA; De Graaff J
    Antonie Van Leeuwenhoek; 1989; 55(2):109-22. PubMed ID: 2662902
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interaction of inflammatory cells and oral bacteria: release of lysosomal hydrolases from rabbit polymorphonuclear leukocytes exposed to gram-positive plaque bacteria.
    Taichman NS; McArthur WP
    Arch Oral Biol; 1976; 21(4):257-63. PubMed ID: 1068661
    [No Abstract]   [Full Text] [Related]  

  • 32. Coaggregation of Candida albicans, Actinomyces naeslundii and Streptococcus mutans is Candida albicans strain dependent.
    Arzmi MH; Dashper S; Catmull D; Cirillo N; Reynolds EC; McCullough M
    FEMS Yeast Res; 2015 Aug; 15(5):fov038. PubMed ID: 26054855
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Studies on the bacterial components which bind Streptococcus sanguis and Streptococcus mutans to hydroxyapatite.
    Liljemark WF; Schauer SV
    Arch Oral Biol; 1975 Sep; 20(9):609-15. PubMed ID: 241311
    [No Abstract]   [Full Text] [Related]  

  • 34. Association of fimbriae with the hydrophobicity of Streptococcus sanguis FC-1 and adherence to salivary pellicles.
    Gibbons RJ; Etherden I; Skobe Z
    Infect Immun; 1983 Jul; 41(1):414-7. PubMed ID: 6134679
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of PH and some reagents on the sucrose-independent non-specific sorption of the oral bacterium Streptococcus mutans to glass.
    Miyasaki KT; Newbrun E
    Arch Oral Biol; 1981; 26(9):735-43. PubMed ID: 6950717
    [No Abstract]   [Full Text] [Related]  

  • 36. Quantifying the strength of bacterial adhesive interactions with salivary glycoproteins.
    Prakobphol A; Burdsal CA; Fisher SJ
    J Dent Res; 1995 May; 74(5):1212-8. PubMed ID: 7790599
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An assessment of the effectiveness of mechanical and chemical cleaning of Essix orthodontic retainer.
    Chang CS; Al-Awadi S; Ready D; Noar J
    J Orthod; 2014 Jun; 41(2):110-7. PubMed ID: 24536071
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adhesion of Streptococcus mutans to different types of brackets.
    Papaioannou W; Gizani S; Nassika M; Kontou E; Nakou M
    Angle Orthod; 2007 Nov; 77(6):1090-5. PubMed ID: 18004916
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Competitive binding among oral strptococci to hydroxyapatite.
    Liljemark WF; Schauer SV
    J Dent Res; 1977 Feb; 56(2):157-65. PubMed ID: 264883
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adhesion of actinomyces isolates to experimental pellicles.
    Steinberg D; Kopec LK; Bowen WH
    J Dent Res; 1993 Jun; 72(6):1015-20. PubMed ID: 8496474
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.