These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 38657071)
1. Bioactive fiber-reinforced hydrogel to tailor cell microenvironment for structural and functional regeneration of myotendinous junction. Sun Y; Sheng R; Cao Z; Liu C; Li J; Zhang P; Du Y; Mo Q; Yao Q; Chen J; Zhang W Sci Adv; 2024 Apr; 10(17):eadm7164. PubMed ID: 38657071 [TBL] [Abstract][Full Text] [Related]
2. Preparation of decellularized biphasic hierarchical myotendinous junction extracellular matrix for muscle regeneration. Zhao C; Wang S; Wang G; Su M; Song L; Chen J; Fan S; Lin X Acta Biomater; 2018 Mar; 68():15-28. PubMed ID: 29294376 [TBL] [Abstract][Full Text] [Related]
3. In vitro development of a muscle-tendon junction construct using decellularised extracellular matrix: Effect of cyclic tensile loading. Iwasaki N; Roldo M; Karali A; Blunn G Biomater Adv; 2024 Jul; 161():213873. PubMed ID: 38692180 [TBL] [Abstract][Full Text] [Related]
4. Tendon Tissue Engineering: Effects of Mechanical and Biochemical Stimulation on Stem Cell Alignment on Cell-Laden Hydrogel Yarns. Rinoldi C; Costantini M; Kijeńska-Gawrońska E; Testa S; Fornetti E; Heljak M; Ćwiklińska M; Buda R; Baldi J; Cannata S; Guzowski J; Gargioli C; Khademhosseini A; Swieszkowski W Adv Healthc Mater; 2019 Apr; 8(7):e1801218. PubMed ID: 30725521 [TBL] [Abstract][Full Text] [Related]
6. An engineered in vitro model of the human myotendinous junction. Josvai M; Polyak E; Kalluri M; Robertson S; Crone WC; Suzuki M Acta Biomater; 2024 May; 180():279-294. PubMed ID: 38604466 [TBL] [Abstract][Full Text] [Related]
7. Integration of mesenchymal stem cell sheet and bFGF-loaded fibrin gel in knitted PLGA scaffolds favorable for tendon repair. Zhao T; Qi Y; Xiao S; Ran J; Wang J; Ghamor-Amegavi EP; Zhou X; Li H; He T; Gou Z; Chen Q; Xu K J Mater Chem B; 2019 Apr; 7(13):2201-2211. PubMed ID: 32073579 [TBL] [Abstract][Full Text] [Related]
8. A Mesoporous Silica-Loaded Multi-Functional Hydrogel Enhanced Tendon Healing via Immunomodulatory and Pro-Regenerative Effects. Wan R; Luo Z; Nie X; Feng X; He Y; Li F; Liu S; Chen W; Qi B; Qin H; Luo W; Zhang H; Jiang H; Sun J; Liu X; Wang Q; Shang X; Qiu J; Chen S Adv Healthc Mater; 2024 Oct; 13(26):e2400968. PubMed ID: 38591103 [TBL] [Abstract][Full Text] [Related]
10. Interleukin-4-loaded hydrogel scaffold regulates macrophages polarization to promote bone mesenchymal stem cells osteogenic differentiation via TGF-β1/Smad pathway for repair of bone defect. Zhang J; Shi H; Zhang N; Hu L; Jing W; Pan J Cell Prolif; 2020 Oct; 53(10):e12907. PubMed ID: 32951298 [TBL] [Abstract][Full Text] [Related]
11. Bioprinted anisotropic scaffolds with fast stress relaxation bioink for engineering 3D skeletal muscle and repairing volumetric muscle loss. Li T; Hou J; Wang L; Zeng G; Wang Z; Yu L; Yang Q; Yin J; Long M; Chen L; Chen S; Zhang H; Li Y; Wu Y; Huang W Acta Biomater; 2023 Jan; 156():21-36. PubMed ID: 36002128 [TBL] [Abstract][Full Text] [Related]
12. Synergistic effects on mesenchymal stem cell-based cartilage regeneration by chondrogenic preconditioning and mechanical stimulation. Lin S; Lee WYW; Feng Q; Xu L; Wang B; Man GCW; Chen Y; Jiang X; Bian L; Cui L; Wei B; Li G Stem Cell Res Ther; 2017 Oct; 8(1):221. PubMed ID: 28974254 [TBL] [Abstract][Full Text] [Related]
13. Scleraxis-overexpressed human embryonic stem cell-derived mesenchymal stem cells for tendon tissue engineering with knitted silk-collagen scaffold. Chen X; Yin Z; Chen JL; Liu HH; Shen WL; Fang Z; Zhu T; Ji J; Ouyang HW; Zou XH Tissue Eng Part A; 2014 Jun; 20(11-12):1583-92. PubMed ID: 24328506 [TBL] [Abstract][Full Text] [Related]
14. An asymmetric chitosan scaffold for tendon tissue engineering: In vitro and in vivo evaluation with rat tendon stem/progenitor cells. Chen E; Yang L; Ye C; Zhang W; Ran J; Xue D; Wang Z; Pan Z; Hu Q Acta Biomater; 2018 Jun; 73():377-387. PubMed ID: 29678676 [TBL] [Abstract][Full Text] [Related]
15. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model. Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059 [TBL] [Abstract][Full Text] [Related]
16. A MnO Li L; Xiao B; Mu J; Zhang Y; Zhang C; Cao H; Chen R; Patra HK; Yang B; Feng S; Tabata Y; Slater NKH; Tang J; Shen Y; Gao J ACS Nano; 2019 Dec; 13(12):14283-14293. PubMed ID: 31769966 [TBL] [Abstract][Full Text] [Related]
17. Cartilage tissue engineering by co-transplantation of chondrocyte extracellular vesicles and mesenchymal stem cells, entrapped in chitosan-hyaluronic acid hydrogel. Heirani-Tabasi A; Hosseinzadeh S; Rabbani S; Ahmadi Tafti SH; Jamshidi K; Soufizomorrod M; Soleimani M Biomed Mater; 2021 Jul; 16(5):. PubMed ID: 34144542 [TBL] [Abstract][Full Text] [Related]
18. Engineered Microenvironmental Cues from Fiber-Reinforced Hydrogel Composites Drive Tenogenesis and Aligned Collagen Deposition. Kent RN; Jewett ME; Buck TP; Said M; Hold LA; Crawford EA; Killian ML; Abraham AC; Huang AH; Baker BM Adv Healthc Mater; 2024 Jul; 13(19):e2400529. PubMed ID: 38441411 [TBL] [Abstract][Full Text] [Related]
19. A sericin/ graphene oxide composite scaffold as a biomimetic extracellular matrix for structural and functional repair of calvarial bone. Qi C; Deng Y; Xu L; Yang C; Zhu Y; Wang G; Wang Z; Wang L Theranostics; 2020; 10(2):741-756. PubMed ID: 31903148 [TBL] [Abstract][Full Text] [Related]
20. Self-assembled GFFYK peptide hydrogel enhances the therapeutic efficacy of mesenchymal stem cells in a mouse hindlimb ischemia model. Huang A; Liu D; Qi X; Yue Z; Cao H; Zhang K; Lei X; Wang Y; Kong D; Gao J; Li Z; Liu N; Wang Y Acta Biomater; 2019 Feb; 85():94-105. PubMed ID: 30550934 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]