BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 3865712)

  • 1. Intermolecular exon ligation of the rRNA precursor of Tetrahymena: oligonucleotides can function as 5' exons.
    Inoue T; Sullivan FX; Cech TR
    Cell; 1985 Dec; 43(2 Pt 1):431-7. PubMed ID: 3865712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 5' exon requirement for self-splicing of the Tetrahymena thermophila pre-ribosomal RNA and identification of a cryptic 5' splice site in the 3' exon.
    Price JV; Engberg J; Cech TR
    J Mol Biol; 1987 Jul; 196(1):49-60. PubMed ID: 2443717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the mode of binding of substrates to the active site of Tetrahymena self-splicing RNA using 5-fluorouracil-substituted mini-exons.
    Danenberg PV; Shea LC; Danenberg K
    Biochemistry; 1989 Aug; 28(16):6779-85. PubMed ID: 2675974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New reactions of the ribosomal RNA precursor of Tetrahymena and the mechanism of self-splicing.
    Inoue T; Sullivan FX; Cech TR
    J Mol Biol; 1986 May; 189(1):143-65. PubMed ID: 2431151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determinants of the 3' splice site for self-splicing of the Tetrahymena pre-rRNA.
    Price JV; Cech TR
    Genes Dev; 1988 Nov; 2(11):1439-47. PubMed ID: 3209068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One binding site determines sequence specificity of Tetrahymena pre-rRNA self-splicing, trans-splicing, and RNA enzyme activity.
    Been MD; Cech TR
    Cell; 1986 Oct; 47(2):207-16. PubMed ID: 3021333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of recognition of the 5' splice site in self-splicing group I introns.
    Garriga G; Lambowitz AM; Inoue T; Cech TR
    Nature; 1986 Jul 3-9; 322(6074):86-9. PubMed ID: 3636598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exon sequences distant from the splice junction are required for efficient self-splicing of the Tetrahymena IVS.
    Woodson SA
    Nucleic Acids Res; 1992 Aug; 20(15):4027-32. PubMed ID: 1508687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deletion of nonconserved helices near the 3' end of the rRNA intron of Tetrahymena thermophila alters self-splicing but not core catalytic activity.
    Barfod ET; Cech TR
    Genes Dev; 1988 Jun; 2(6):652-63. PubMed ID: 3417146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alternative secondary structures in the 5' exon affect both forward and reverse self-splicing of the Tetrahymena intervening sequence RNA.
    Woodson SA; Cech TR
    Biochemistry; 1991 Feb; 30(8):2042-50. PubMed ID: 1998665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Guanosine binding required for cyclization of the self-splicing intervening sequence ribonucleic acid from Tetrahymena thermophila.
    Tanner NK; Cech TR
    Biochemistry; 1987 Jun; 26(12):3330-40. PubMed ID: 2443161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selection of circularization sites in a group I IVS RNA requires multiple alignments of an internal template-like sequence.
    Been MD; Cech TR
    Cell; 1987 Sep; 50(6):951-61. PubMed ID: 2441876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Base pairing between the 3' exon and an internal guide sequence increases 3' splice site specificity in the Tetrahymena self-splicing rRNA intron.
    Suh ER; Waring RB
    Mol Cell Biol; 1990 Jun; 10(6):2960-5. PubMed ID: 2342465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversibility of cyclization of the Tetrahymena rRNA intervening sequence: implication for the mechanism of splice site choice.
    Sullivan FX; Cech TR
    Cell; 1985 Sep; 42(2):639-48. PubMed ID: 3849344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An alternative helix in the 26S rRNA promotes excision and integration of the Tetrahymena intervening sequence.
    Woodson SA; Emerick VL
    Mol Cell Biol; 1993 Feb; 13(2):1137-45. PubMed ID: 8380892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reverse self-splicing of the tetrahymena group I intron: implication for the directionality of splicing and for intron transposition.
    Woodson SA; Cech TR
    Cell; 1989 Apr; 57(2):335-45. PubMed ID: 2702692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A modified group I intron can function as both a ribozyme and a 5' exon in a trans-exon ligation reaction.
    Tasiouka KI; Burke JM
    Gene; 1994 Jun; 144(1):1-7. PubMed ID: 8026742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalysis of RNA cleavage by the Tetrahymena thermophila ribozyme. 1. Kinetic description of the reaction of an RNA substrate complementary to the active site.
    Herschlag D; Cech TR
    Biochemistry; 1990 Nov; 29(44):10159-71. PubMed ID: 2271645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic investigations of a ribozyme derived from the Tetrahymena group I intron: insights into catalysis and the second step of self-splicing.
    Mei R; Herschlag D
    Biochemistry; 1996 May; 35(18):5796-809. PubMed ID: 8639540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Destabilizing effect of an rRNA stem-loop on an attenuator hairpin in the 5' exon of the Tetrahymena pre-rRNA.
    Cao Y; Woodson SA
    RNA; 1998 Aug; 4(8):901-14. PubMed ID: 9701282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.