These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 38657170)

  • 41. Energy coupling in Saccharomyces cerevisiae: selected opportunities for metabolic engineering.
    de Kok S; Kozak BU; Pronk JT; van Maris AJ
    FEMS Yeast Res; 2012 Jun; 12(4):387-97. PubMed ID: 22404754
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dynamical Modeling of Optogenetic Circuits in Yeast for Metabolic Engineering Applications.
    Lovelett RJ; Zhao EM; Lalwani MA; Toettcher JE; Kevrekidis IG; L Avalos J
    ACS Synth Biol; 2021 Feb; 10(2):219-227. PubMed ID: 33492138
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Genome-Scale Metabolic Modeling from Yeast to Human Cell Models of Complex Diseases: Latest Advances and Challenges.
    Chen Y; Li G; Nielsen J
    Methods Mol Biol; 2019; 2049():329-345. PubMed ID: 31602620
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Whole-cell modeling in yeast predicts compartment-specific proteome constraints that drive metabolic strategies.
    Elsemman IE; Rodriguez Prado A; Grigaitis P; Garcia Albornoz M; Harman V; Holman SW; van Heerden J; Bruggeman FJ; Bisschops MMM; Sonnenschein N; Hubbard S; Beynon R; Daran-Lapujade P; Nielsen J; Teusink B
    Nat Commun; 2022 Feb; 13(1):801. PubMed ID: 35145105
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Modular Ligation Extension of Guide RNA Operons (LEGO) for Multiplexed dCas9 Regulation of Metabolic Pathways in Saccharomyces cerevisiae.
    Deaner M; Holzman A; Alper HS
    Biotechnol J; 2018 Sep; 13(9):e1700582. PubMed ID: 29663663
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modular Pathway Rewiring of Yeast for Amino Acid Production.
    Liu Q; Yu T; Campbell K; Nielsen J; Chen Y
    Methods Enzymol; 2018; 608():417-439. PubMed ID: 30173772
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fifteen years of large scale metabolic modeling of yeast: developments and impacts.
    Osterlund T; Nookaew I; Nielsen J
    Biotechnol Adv; 2012; 30(5):979-88. PubMed ID: 21846501
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Multidimensional Metabolic Engineering for Constructing Efficient Cell Factories.
    Liu J; Hou J
    Trends Biotechnol; 2020 May; 38(5):468-469. PubMed ID: 32302578
    [TBL] [Abstract][Full Text] [Related]  

  • 49. YeastFab: the design and construction of standard biological parts for metabolic engineering in Saccharomyces cerevisiae.
    Guo Y; Dong J; Zhou T; Auxillos J; Li T; Zhang W; Wang L; Shen Y; Luo Y; Zheng Y; Lin J; Chen GQ; Wu Q; Cai Y; Dai J
    Nucleic Acids Res; 2015 Jul; 43(13):e88. PubMed ID: 25956650
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rewiring yeast metabolism to synthesize products beyond ethanol.
    Gambacorta FV; Dietrich JJ; Yan Q; Pfleger BF
    Curr Opin Chem Biol; 2020 Dec; 59():182-192. PubMed ID: 33032255
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Inferring metabolic states in uncharacterized environments using gene-expression measurements.
    Rossell S; Huynen MA; Notebaart RA
    PLoS Comput Biol; 2013; 9(3):e1002988. PubMed ID: 23555222
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evaluation of control mechanisms for Saccharomyces cerevisiae central metabolic reactions using metabolome data of eight single-gene deletion mutants.
    Shirai T; Matsuda F; Okamoto M; Kondo A
    Appl Microbiol Biotechnol; 2013 Apr; 97(8):3569-77. PubMed ID: 23224404
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterization of the adaptive response and growth upon hyperosmotic shock in Saccharomyces cerevisiae.
    Parmar JH; Bhartiya S; Venkatesh KV
    Mol Biosyst; 2011 Apr; 7(4):1138-48. PubMed ID: 21234493
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Regulation and metabolic engineering strategies for permeases of Saccharomyces cerevisiae.
    Zhang P; Chen Q; Fu G; Xia L; Hu X
    World J Microbiol Biotechnol; 2019 Jul; 35(7):112. PubMed ID: 31286266
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Regulation of thiamine synthesis in Saccharomyces cerevisiae for improved pyruvate production.
    Xu G; Hua Q; Duan N; Liu L; Chen J
    Yeast; 2012 Jun; 29(6):209-17. PubMed ID: 22674684
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multi-modular metabolic engineering and efflux engineering for enhanced lycopene production in recombinant Saccharomyces cerevisiae.
    Huang G; Li J; Lin J; Duan C; Yan G
    J Ind Microbiol Biotechnol; 2024 Jan; 51():. PubMed ID: 38621758
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Regulation of NAD+ metabolism, signaling and compartmentalization in the yeast Saccharomyces cerevisiae.
    Kato M; Lin SJ
    DNA Repair (Amst); 2014 Nov; 23():49-58. PubMed ID: 25096760
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Metabolic engineering of a synergistic pathway for n-butanol production in Saccharomyces cerevisiae.
    Shi S; Si T; Liu Z; Zhang H; Ang EL; Zhao H
    Sci Rep; 2016 May; 6():25675. PubMed ID: 27161023
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Design and engineering of intracellular-metabolite-sensing/regulation gene circuits in Saccharomyces cerevisiae.
    Wang M; Li S; Zhao H
    Biotechnol Bioeng; 2016 Jan; 113(1):206-15. PubMed ID: 26059511
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Natural promoters and promoter engineering strategies for metabolic regulation in Saccharomyces cerevisiae.
    He S; Zhang Z; Lu W
    J Ind Microbiol Biotechnol; 2023 Feb; 50(1):. PubMed ID: 36633543
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.