These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 38657305)
1. Enhancing bioelectrochemical hydrogen production from industrial wastewater using Ni-foam cathodes in a microbial electrolysis cell pilot plant. Guerrero-Sodric O; Baeza JA; Guisasola A Water Res; 2024 Jun; 256():121616. PubMed ID: 38657305 [TBL] [Abstract][Full Text] [Related]
2. Enhancing biohydrogen production from sugar industry wastewater using Ni, Ni-Co and Ni-Co-P electrodeposits as cathodes in microbial electrolysis cells. Chaurasia AK; Mondal P Chemosphere; 2022 Jan; 286(Pt 3):131728. PubMed ID: 34416586 [TBL] [Abstract][Full Text] [Related]
3. Performance of a pilot-scale microbial electrolysis cell coupled with biofilm-based reactor for household wastewater treatment: simultaneous pollutant removal and hydrogen production. Estrada-Arriaga EB; Montero-Farías R; Morales-Morales C; García-Sánchez L; Falcón-Rojas A; Garzón-Zúñiga MA; Gutierrez-Macias T Bioprocess Biosyst Eng; 2024 Nov; 47(11):1929-1950. PubMed ID: 39153098 [TBL] [Abstract][Full Text] [Related]
4. Effects of nickle, nickle-cobalt and nickle-cobalt-phosphorus nanocatalysts for enhancing biohydrogen production in microbial electrolysis cells using paper industry wastewater. Chaurasia AK; Shankar R; Mondal P J Environ Manage; 2021 Nov; 298():113542. PubMed ID: 34426219 [TBL] [Abstract][Full Text] [Related]
5. Introducing an affordable catalyst for biohydrogen production in microbial electrolysis cells. Ghasemi B; Yaghmaei S; Abdi K; Mardanpour MM; Haddadi SA J Biosci Bioeng; 2020 Jan; 129(1):67-76. PubMed ID: 31445821 [TBL] [Abstract][Full Text] [Related]
6. Influence of Nickel molybdate nanocatalyst for enhancing biohydrogen production in microbial electrolysis cell utilizing sugar industrial effluent. Jayabalan T; Matheswaran M; Radhakrishnan TK; Naina Mohamed S Bioresour Technol; 2021 Jan; 320(Pt A):124284. PubMed ID: 33137640 [TBL] [Abstract][Full Text] [Related]
7. Hydrogen production and wastewater treatment in a microbial electrolysis cell with a biocathode. Xu Y; Jiang Y; Chen Y; Zhu S; Shen S Water Environ Res; 2014 Jul; 86(7):649-53. PubMed ID: 25112032 [TBL] [Abstract][Full Text] [Related]
8. High surface area stainless steel brushes as cathodes in microbial electrolysis cells. Call DF; Merrill MD; Logan BE Environ Sci Technol; 2009 Mar; 43(6):2179-83. PubMed ID: 19368232 [TBL] [Abstract][Full Text] [Related]
9. The microbial synergy and response mechanisms of hydrolysis-acidification combined microbial electrolysis cell system with stainless-steel cathode for textile-dyeing wastewater treatment. Xie J; Zou X; Chang Y; Xie J; Liu H; Cui MH; Zhang TC; Chen C Sci Total Environ; 2023 Jan; 855():158912. PubMed ID: 36162577 [TBL] [Abstract][Full Text] [Related]
10. Biohydrogen generation from distillery effluent using baffled up-flow microbial electrolysis cell. Murugaiyan J; Narayanan A; Naina Mohamed S Water Environ Res; 2024 Sep; 96(9):e11119. PubMed ID: 39299908 [TBL] [Abstract][Full Text] [Related]
11. Multiple syntrophic interactions drive biohythane production from waste sludge in microbial electrolysis cells. Liu Q; Ren ZJ; Huang C; Liu B; Ren N; Xing D Biotechnol Biofuels; 2016; 9():162. PubMed ID: 27489567 [TBL] [Abstract][Full Text] [Related]
12. Regenerable Nickel-Functionalized Activated Carbon Cathodes Enhanced by Metal Adsorption to Improve Hydrogen Production in Microbial Electrolysis Cells. Kim KY; Yang W; Logan BE Environ Sci Technol; 2018 Jun; 52(12):7131-7137. PubMed ID: 29845859 [TBL] [Abstract][Full Text] [Related]
13. Efficient H Song S; Huang L; Zhou P Appl Microbiol Biotechnol; 2023 Jan; 107(1):391-404. PubMed ID: 36413265 [TBL] [Abstract][Full Text] [Related]
14. Continuous high-purity bioelectrochemical nitrogen recovery from high N-loaded wastewaters. Ul Z; Sulonen M; Baeza JA; Guisasola A Bioelectrochemistry; 2024 Aug; 158():108707. PubMed ID: 38653107 [TBL] [Abstract][Full Text] [Related]
15. Scaling-up of membraneless microbial electrolysis cells (MECs) for domestic wastewater treatment: Bottlenecks and limitations. Escapa A; San-Martín MI; Mateos R; Morán A Bioresour Technol; 2015 Mar; 180():72-8. PubMed ID: 25590425 [TBL] [Abstract][Full Text] [Related]
16. Long-term continuous production of H2 in a microbial electrolysis cell (MEC) treating saline wastewater. Carmona-Martínez AA; Trably E; Milferstedt K; Lacroix R; Etcheverry L; Bernet N Water Res; 2015 Sep; 81():149-56. PubMed ID: 26057262 [TBL] [Abstract][Full Text] [Related]
17. Enhanced hydrogen production in microbial electrolysis cell with 3D self-assembly nickel foam-graphene cathode. Cai W; Liu W; Han J; Wang A Biosens Bioelectron; 2016 Jun; 80():118-122. PubMed ID: 26807526 [TBL] [Abstract][Full Text] [Related]
18. Improved hydrogen gas production in microbial electrolysis cells using inexpensive recycled carbon fibre fabrics. Carlotta-Jones DI; Purdy K; Kirwan K; Stratford J; Coles SR Bioresour Technol; 2020 May; 304():122983. PubMed ID: 32086038 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of low-cost cathode catalysts for high yield biohydrogen production in microbial electrolysis cell. Wang L; Chen Y; Ye Y; Lu B; Zhu S; Shen S Water Sci Technol; 2011; 63(3):440-8. PubMed ID: 21278465 [TBL] [Abstract][Full Text] [Related]
20. Biohydrogen upgradation and wastewater treatment in 3-chambered bioelectrochemical system assisted with H Jadhav DA; Kumar G; Jang JK; Chae KJ J Environ Manage; 2024 Sep; 368():122209. PubMed ID: 39180821 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]