These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38657305)

  • 61. Evaluation of electrical current production in microbial electrolysis cells fed with animal rendering wastewater.
    Xie A; Deaver JA; Miller E; Popat SC
    Chemosphere; 2021 Dec; 285():131547. PubMed ID: 34329127
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Concurrent desalination and hydrogen generation using microbial electrolysis and desalination cells.
    Luo H; Jenkins PE; Ren Z
    Environ Sci Technol; 2011 Jan; 45(1):340-4. PubMed ID: 21121677
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Surpassing the current limitations of high purity H
    Kadier A; Kalil MS; Chandrasekhar K; Mohanakrishna G; Saratale GD; Saratale RG; Kumar G; Pugazhendhi A; Sivagurunathan P
    Bioelectrochemistry; 2018 Feb; 119():211-219. PubMed ID: 29073521
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Vapor-Fed Cathode Microbial Electrolysis Cells with Closely Spaced Electrodes Enables Greatly Improved Performance.
    Rossi R; Baek G; Logan BE
    Environ Sci Technol; 2022 Jan; 56(2):1211-1220. PubMed ID: 34971515
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Pilot scale microbial fuel cells using air cathodes for producing electricity while treating wastewater.
    Rossi R; Hur AY; Page MA; Thomas AO; Butkiewicz JJ; Jones DW; Baek G; Saikaly PE; Cropek DM; Logan BE
    Water Res; 2022 May; 215():118208. PubMed ID: 35255425
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A review on self-sustainable microbial electrolysis cells for electro-biohydrogen production via coupling with carbon-neutral renewable energy technologies.
    Yang E; Omar Mohamed H; Park SG; Obaid M; Al-Qaradawi SY; Castaño P; Chon K; Chae KJ
    Bioresour Technol; 2021 Jan; 320(Pt B):124363. PubMed ID: 33186801
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Cooperative cathode electrode and in situ deposited copper for subsequent enhanced Cd(II) removal and hydrogen evolution in bioelectrochemical systems.
    Wang Q; Huang L; Pan Y; Zhou P; Quan X; Logan BE; Chen H
    Bioresour Technol; 2016 Jan; 200():565-71. PubMed ID: 26528907
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Industrial-scale application of the plunger flow electro-oxidation reactor in wastewater depth treatment.
    Huang G; Yao J; Pan W; Wang J
    Environ Sci Pollut Res Int; 2016 Sep; 23(18):18288-95. PubMed ID: 27278066
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The Detoxification and Degradation of Benzothiazole from the Wastewater in Microbial Electrolysis Cells.
    Liu X; Ding J; Ren N; Tong Q; Zhang L
    Int J Environ Res Public Health; 2016 Dec; 13(12):. PubMed ID: 27999421
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Shift of biofilm and suspended bacterial communities with changes in anode potential in a microbial electrolysis cell treating primary sludge.
    Zakaria BS; Lin L; Dhar BR
    Sci Total Environ; 2019 Nov; 689():691-699. PubMed ID: 31280150
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Bioelectrochemical systems with a cathode of stainless-steel electrode for treatment of refractory wastewater: Influence of electrode material on system performance and microbial community.
    Xie J; Zou X; Chang Y; Chen C; Ma J; Liu H; Cui MH; Zhang TC
    Bioresour Technol; 2021 Dec; 342():125959. PubMed ID: 34852439
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies.
    Oh SE; Logan BE
    Water Res; 2005 Nov; 39(19):4673-82. PubMed ID: 16289673
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Treating refinery wastewaters in microbial fuel cells using separator electrode assembly or spaced electrode configurations.
    Zhang F; Ahn Y; Logan BE
    Bioresour Technol; 2014; 152():46-52. PubMed ID: 24275025
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Attenuation of trace organic compounds (TOrCs) in bioelectrochemical systems.
    Werner CM; Hoppe-Jones C; Saikaly PE; Logan BE; Amy GL
    Water Res; 2015 Apr; 73():56-67. PubMed ID: 25644628
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Concurrent hydrogen production and phosphorus recovery in dual chamber microbial electrolysis cell.
    Almatouq A; Babatunde AO
    Bioresour Technol; 2017 Aug; 237():193-203. PubMed ID: 28254344
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Linking internal resistance with design and operation decisions in microbial electrolysis cells.
    Miller A; Singh L; Wang L; Liu H
    Environ Int; 2019 May; 126():611-618. PubMed ID: 30856448
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Persistent Hydrogen Production by the Photo-Assisted Microbial Electrolysis Cell Using a p-Type Polyaniline Nanofiber Cathode.
    Jeon Y; Kim S
    ChemSusChem; 2016 Dec; 9(23):3276-3279. PubMed ID: 27882683
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Treatability studies on different refinery wastewater samples using high-throughput microbial electrolysis cells (MECs).
    Ren L; Siegert M; Ivanov I; Pisciotta JM; Logan BE
    Bioresour Technol; 2013 May; 136():322-8. PubMed ID: 23567698
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Large-scale switchable potentiostatically controlled/microbial fuel cell bioelectrochemical wastewater treatment system.
    Mohamed A; Zmuda HM; Ha PT; Coats ER; Beyenal H
    Bioelectrochemistry; 2021 Apr; 138():107724. PubMed ID: 33485135
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The impact of anode acclimation strategy on microbial electrolysis cell treating hydrogen fermentation effluent.
    Li X; Zhang R; Qian Y; Angelidaki I; Zhang Y
    Bioresour Technol; 2017 Jul; 236():37-43. PubMed ID: 28390275
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.