These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38657544)

  • 21. Improved Reversible Capacity and Cycling Stability by Linear (N=O) Anions in Fe[Fe(CN)
    Han Q; Hu Y; Gao S; Yang Z; Liu X; Wang C; Han J
    ChemSusChem; 2023 Oct; 16(20):e202300823. PubMed ID: 37552229
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oxygen Vacancies on NH
    Peng Y; Mo L; Wei T; Wang Y; Zhang X; Li Z; Huang Y; Yang G; Hu L
    Small; 2024 Mar; 20(11):e2306972. PubMed ID: 38143291
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Architecting hierarchical shell porosity of hollow prussian blue-derived iron oxide for enhanced Li storage.
    Zhao Z; Liu X; Luan C; Liu X; Wang D; Qin T; Sui L; Zhang W
    J Microsc; 2019 Nov; 276(2):53-62. PubMed ID: 31603242
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of particle dispersion on electrochemical performance of Prussian blue analogues electrode materials for sodium ion batteries.
    Chen WC; Li SJ; Xu HY; Xu SH; Fei GT
    Chemphyschem; 2024 Mar; 25(5):e202300960. PubMed ID: 38179835
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ice-Assisted Synthesis of Highly Crystallized Prussian Blue Analogues for All-Climate and Long-Calendar-Life Sodium Ion Batteries.
    Peng J; Zhang W; Hu Z; Zhao L; Wu C; Peleckis G; Gu Q; Wang JZ; Liu HK; Dou SX; Chou S
    Nano Lett; 2022 Feb; 22(3):1302-1310. PubMed ID: 35089723
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Organic Ammonium Ion Battery: A New Strategy for a Nonmetallic Ion Energy Storage System.
    Zhang H; Tian Y; Wang W; Jian Z; Chen W
    Angew Chem Int Ed Engl; 2022 Jul; 61(27):e202204351. PubMed ID: 35470508
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Potassium Ammonium Vanadate with Rich Oxygen Vacancies for Fast and Highly Stable Zn-Ion Storage.
    Zong Q; Wang Q; Liu C; Tao D; Wang J; Zhang J; Du H; Chen J; Zhang Q; Cao G
    ACS Nano; 2022 Mar; 16(3):4588-4598. PubMed ID: 35258924
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Initiating Hexagonal MoO
    Liang G; Wang Y; Huang Z; Mo F; Li X; Yang Q; Wang D; Li H; Chen S; Zhi C
    Adv Mater; 2020 Apr; 32(14):e1907802. PubMed ID: 32080917
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prussian Blue Analogues in Aqueous Batteries and Desalination Batteries.
    Xu C; Yang Z; Zhang X; Xia M; Yan H; Li J; Yu H; Zhang L; Shu J
    Nanomicro Lett; 2021 Aug; 13(1):166. PubMed ID: 34351516
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Zn-Ion Batteries: Boosting the Rate Capability and Low-temperature Performance by Combining Structure and Morphology Engineering.
    Wang F; Li Y; Zhu W; Ge X; Cui H; Feng K; Liu S; Yang X
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34468-34476. PubMed ID: 34260197
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Water-in-Salt Electrolyte Promotes High-Capacity FeFe(CN)
    Zhou A; Jiang L; Yue J; Tong Y; Zhang Q; Lin Z; Liu B; Wu C; Suo L; Hu YS; Li H; Chen L
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41356-41362. PubMed ID: 31603299
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Designing CoHCF@FeHCF Core-Shell Structures to Enhance the Rate Performance and Cycling Stability of Sodium-Ion Batteries.
    Pan ZT; He ZH; Hou JF; Kong LB
    Small; 2023 Nov; 19(45):e2302788. PubMed ID: 37431201
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Layered manganese dioxide nanoflowers with Cu
    Long F; Xiang Y; Yang S; Li Y; Du H; Liu Y; Wu X; Wu X
    J Colloid Interface Sci; 2022 Jun; 616():101-109. PubMed ID: 35193050
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Controlled Synthesis of 2D Prussian Blue Analog Nanosheets with Low Coordinated Water Content for High-Performance Lithium Storage.
    Yin J; Zhou J; Wang Y; Ma Y; Zhou X; Wang G; Yang Y; Lu P; Yu J; Chen Y; Yuan Y; Ye C; Xi S; Fan Z
    Small Methods; 2022 Dec; 6(12):e2201107. PubMed ID: 36287094
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimizing Mn in Prussian blue analogs with double redox active sites to induce boosted Zn
    Ye L; Fu H; Cao R; Yang J
    J Colloid Interface Sci; 2024 Jun; 664():423-432. PubMed ID: 38484511
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Polypyrrole pre-intercalation engineering-induced NH
    Gong Y; Zhang P; Fan S; Cai M; Hu J; Luo Z; Mi H; Jiang X; Zhang Q; Ren X
    J Colloid Interface Sci; 2024 Jun; 664():168-177. PubMed ID: 38460381
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Highly Crystallized Prussian Blue with Enhanced Kinetics for Highly Efficient Sodium Storage.
    Qin M; Ren W; Jiang R; Li Q; Yao X; Wang S; You Y; Mai L
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):3999-4007. PubMed ID: 33439613
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rocking-Chair Ammonium-Ion Battery: A Highly Reversible Aqueous Energy Storage System.
    Wu X; Qi Y; Hong JJ; Li Z; Hernandez AS; Ji X
    Angew Chem Int Ed Engl; 2017 Oct; 56(42):13026-13030. PubMed ID: 28859240
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An Open-Framework Structured Material: [Ni(en)
    Zhang D; Sun L; Wang C; Xue Q; Feng J; Ran W; Yan T
    ACS Appl Mater Interfaces; 2022 Apr; 14(14):16197-16203. PubMed ID: 35362955
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Vacancies-regulated Prussian Blue Analogues through Precipitation Conversion for Cathodes in Sodium-ion Batteries with Energy Densities over 500 Wh/kg.
    Liu J; Wang Y; Jiang N; Wen B; Yang C; Liu Y
    Angew Chem Int Ed Engl; 2024 Feb; ():e202400214. PubMed ID: 38299760
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.