These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 3865758)

  • 1. Regulation of antibiotic resistance in bacteria: the chloramphenicol acetyltransferase system.
    Shaw WV; Brenner DG; Murray IA
    Curr Top Cell Regul; 1985; 26():455-68. PubMed ID: 3865758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloning of a chloramphenicol acetyltransferase gene of Streptomyces acrimycini and its expression in Streptomyces and Escherichia coli.
    Gil JA; Kieser HM; Hopwood DA
    Gene; 1985; 38(1-3):1-8. PubMed ID: 3905512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chloramphenicol resistance that does not involve chloramphenicol acetyltransferase encoded by plasmids from gram-negative bacteria.
    Gaffney DF; Cundliffe E; Foster TJ
    J Gen Microbiol; 1981 Jul; 125(1):113-21. PubMed ID: 7038031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular basis of bacterial resistance to chloramphenicol and florfenicol.
    Schwarz S; Kehrenberg C; Doublet B; Cloeckaert A
    FEMS Microbiol Rev; 2004 Nov; 28(5):519-42. PubMed ID: 15539072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chloramphenicol induces translation of the mRNA for a chloramphenicol-resistance gene in Bacillus subtilis.
    Duvall EJ; Lovett PS
    Proc Natl Acad Sci U S A; 1986 Jun; 83(11):3939-43. PubMed ID: 3086871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial resistance evolution by recruitment of super-integron gene cassettes.
    Rowe-Magnus DA; Guerout AM; Mazel D
    Mol Microbiol; 2002 Mar; 43(6):1657-69. PubMed ID: 11952913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Occurrence of chloramphenicol acetyltransferase and Tn9 among chloramphenicol-resistant enteric bacteria from humans and animals.
    Matthews PR; Cameron FH; Stewart PR
    J Antimicrob Chemother; 1983 Jun; 11(6):535-42. PubMed ID: 6576996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequence and expression characteristics of a shuttle chloramphenicol-resistance marker for Saccharomyces cerevisiae and Escherichia coli.
    Hadfield C; Cashmore AM; Meacock PA
    Gene; 1987; 52(1):59-70. PubMed ID: 3036659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chloramphenicol acetyltransferase: enzymology and molecular biology.
    Shaw WV
    CRC Crit Rev Biochem; 1983; 14(1):1-46. PubMed ID: 6340955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of antibiotic resistance genes from Escherichia coli in Bacillus subtilis.
    Kreft J; Burger KJ; Goebel W
    Mol Gen Genet; 1983; 190(3):384-9. PubMed ID: 6410152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional prokaryotic gene control signals within a eukaryotic rainbow trout protamine promoter.
    Jankowski JM; Walczyk E; Dixon GH
    Biosci Rep; 1985 Jun; 5(6):453-61. PubMed ID: 3899211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction and characterization of the chloramphenicol-resistance gene cartridge: a new approach to the transcriptional mapping of extrachromosomal elements.
    Close TJ; Rodriguez RL
    Gene; 1982 Dec; 20(2):305-16. PubMed ID: 6299895
    [No Abstract]   [Full Text] [Related]  

  • 13. Expression of a chloramphenicol-resistance determinant carried on hybrid plasmids in gram-positive and gram-negative bacteria.
    Brückner R; Zyprian E; Matzura H
    Gene; 1984 Dec; 32(1-2):151-60. PubMed ID: 6442250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmid vectors for the selection of promoters.
    Brosius J
    Gene; 1984 Feb; 27(2):151-60. PubMed ID: 6327464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical anatomy of antibiotic resistance: chloramphenicol acetyltransferase.
    Shaw WV
    Sci Prog; 1992; 76(301-302 Pt 3-4):565-80. PubMed ID: 1364583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Primary structure of a chloramphenicol acetyltransferase specified by R plasmids.
    Shaw WV; Packman LC; Burleigh BD; Dell A; Morris HR; Hartley BS
    Nature; 1979 Dec 20-27; 282(5741):870-2. PubMed ID: 390404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterogeneity of chromosomal genes encoding chloramphenicol resistance in streptococci.
    Pepper K; de Cespédès G; Horaud T
    Plasmid; 1988 Jan; 19(1):71-4. PubMed ID: 2840683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleotide sequence of a Bacillus pumilus gene specifying chloramphenicol acetyltransferase.
    Harwood CR; Williams DM; Lovett PS
    Gene; 1983 Oct; 24(2-3):163-9. PubMed ID: 6315534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Translational block to expression of the Escherichia coli Tn9-derived chloramphenicol-resistance gene in Bacillus subtilis.
    Goldfarb DS; Rodriguez RL; Doi RH
    Proc Natl Acad Sci U S A; 1982 Oct; 79(19):5886-90. PubMed ID: 6310552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chloroplast promoter driven expression of the chloramphenicol acetyl transferase gene in a cyanobacterium.
    Dzelzkalns VA; Owens GC; Bogorad L
    Nucleic Acids Res; 1984 Dec; 12(23):8917-25. PubMed ID: 6096812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.