These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38657621)

  • 1. Flexural and acoustic phonon-drag thermopower and electron energy loss rate in silicene.
    Ansari M; Ashraf SSZ; Tripathi P; Ahmad A
    J Phys Condens Matter; 2024 May; 36(31):. PubMed ID: 38657621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron single flexural phonon relaxation, energy loss and thermopower in single and bilayer graphene in the Bloch-Gruneisen regime.
    Ansari M; Ashraf SSZ
    J Phys Condens Matter; 2018 Dec; 30(48):485501. PubMed ID: 30418954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phonon-drag thermopower and hot-electron energy-loss rate in a Rashba spin-orbit coupled two-dimensional electron system.
    Biswas T; Ghosh TK
    J Phys Condens Matter; 2013 Jul; 25(26):265301. PubMed ID: 23751509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of a piezoelectric substrate on phonon-drag thermopower in monolayer graphene.
    Bhargavi KS; Kubakaddi SS; Ford CJB
    J Phys Condens Matter; 2017 Jun; 29(23):235303. PubMed ID: 28398212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phonon-drag thermopower in 3D Dirac semimetals.
    Kubakaddi SS
    J Phys Condens Matter; 2015 Nov; 27(45):455801. PubMed ID: 26490643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phonon-drag thermopower in a monolayer MoS2.
    Bhargavi KS; Kubakaddi SS
    J Phys Condens Matter; 2014 Dec; 26(48):485013. PubMed ID: 25388090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phonon-drag magnetothermopower in Rashba spin-split two-dimensional electron systems.
    Biswas T; Ghosh TK
    J Phys Condens Matter; 2013 Oct; 25(41):415301. PubMed ID: 24047679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phonon-drag thermopower and thermoelectric performance of MoS
    Phuc HV; Kubakaddi SS; Dinh L; Bich TN; Hieu NN
    J Phys Condens Matter; 2022 Jun; 34(31):. PubMed ID: 35636387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drag thermopower in nanowires and bulk potassium crystals under the conditions of competition between the boundary and bulk mechanisms of phonon relaxation.
    Kuleyev II; Kuleyev IG
    J Phys Condens Matter; 2019 Sep; 31(37):375701. PubMed ID: 31167176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tensile strains give rise to strong size effects for thermal conductivities of silicene, germanene and stanene.
    Kuang YD; Lindsay L; Shi SQ; Zheng GP
    Nanoscale; 2016 Feb; 8(6):3760-7. PubMed ID: 26815838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phonon-drag thermopower in an armchair graphene nanoribbon.
    Bhargavi KS; Kubakaddi SS
    J Phys Condens Matter; 2011 Jul; 23(27):275303. PubMed ID: 21697579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acoustic phonon-limited resistivity of spin-orbit coupled two-dimensional electron gas: the deformation potential and piezoelectric scattering.
    Biswas T; Ghosh TK
    J Phys Condens Matter; 2013 Jan; 25(3):035301. PubMed ID: 23221021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phononic thermal conductivity in silicene: the role of vacancy defects and boundary scattering.
    Barati M; Vazifehshenas T; Salavati-Fard T; Farmanbar M
    J Phys Condens Matter; 2018 Apr; 30(15):155307. PubMed ID: 29504943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bilateral substrate effect on the thermal conductivity of two-dimensional silicon.
    Zhang X; Bao H; Hu M
    Nanoscale; 2015 Apr; 7(14):6014-22. PubMed ID: 25762032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phonon Thermal Transport in Silicene/Graphene Heterobilayer Nanostructures: Effect of Interlayer Interactions.
    Zhou J; Li H; Tang HK; Shao L; Han K; Shen X
    ACS Omega; 2022 Feb; 7(7):5844-5852. PubMed ID: 35224345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How Hydrodynamic Phonon Transport Determines the Convergence of Thermal Conductivity in Two-Dimensional Materials.
    Jiang J; Lu S; Ouyang Y; Chen J
    Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction of thermal conductivity in silicene nanomesh: insights from coherent and incoherent phonon transport.
    Cui L; Shi S; Li Z; Wei G; Du X
    Phys Chem Chem Phys; 2018 Oct; 20(42):27169-27175. PubMed ID: 30338327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing the ballistic thermal transport of silicene through smooth interface coupling.
    Chen CY; She Y; Xiao H; Ding J; Cao J; Guo ZX
    J Phys Condens Matter; 2016 Apr; 28(14):145003. PubMed ID: 26965319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable electron-flexural phonon interaction in graphene heterostructures.
    Sadeghi MM; Huang Y; Lian C; Giustino F; Tutuc E; MacDonald AH; Taniguchi T; Watanabe K; Shi L
    Nature; 2023 May; 617(7960):282-286. PubMed ID: 37100903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beyond graphene: stable elemental monolayers of silicene and germanene.
    Roome NJ; Carey JD
    ACS Appl Mater Interfaces; 2014 May; 6(10):7743-50. PubMed ID: 24724967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.