These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38657621)

  • 21. Controlling electron-phonon interactions in graphene at ultrahigh carrier densities.
    Efetov DK; Kim P
    Phys Rev Lett; 2010 Dec; 105(25):256805. PubMed ID: 21231611
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultra-low lattice thermal conductivity of monolayer penta-silicene and penta-germanene.
    Gao Z; Zhang Z; Liu G; Wang JS
    Phys Chem Chem Phys; 2019 Dec; 21(47):26033-26040. PubMed ID: 31746866
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phonon-limited transport coefficients in extrinsic graphene.
    Muñoz E
    J Phys Condens Matter; 2012 May; 24(19):195302. PubMed ID: 22517027
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Significant Phonon Drag Enables High Power Factor in the AlGaN/GaN Two-Dimensional Electron Gas.
    Yalamarthy AS; Muñoz Rojo M; Bruefach A; Boone D; Dowling KM; Satterthwaite PF; Goldhaber-Gordon D; Pop E; Senesky DG
    Nano Lett; 2019 Jun; 19(6):3770-3776. PubMed ID: 31088057
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phonon thermal transport in silicene-germanene superlattice: a molecular dynamics study.
    Wang X; Hong Y; Chan PKL; Zhang J
    Nanotechnology; 2017 Jun; 28(25):255403. PubMed ID: 28486215
    [TBL] [Abstract][Full Text] [Related]  

  • 26. First-principles study of thermal transport in nitrogenated holey graphene.
    Ouyang T; Xiao H; Tang C; Zhang X; Hu M; Zhong J
    Nanotechnology; 2017 Jan; 28(4):045709. PubMed ID: 27997371
    [TBL] [Abstract][Full Text] [Related]  

  • 27. First-Principles Prediction of Ultralow Lattice Thermal Conductivity of Dumbbell Silicene: A Comparison with Low-Buckled Silicene.
    Peng B; Zhang H; Shao H; Xu Y; Zhang R; Lu H; Zhang DW; Zhu H
    ACS Appl Mater Interfaces; 2016 Aug; 8(32):20977-85. PubMed ID: 27460331
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamic dielectric function and phonon self-energy from electrons strongly correlated with acoustic phonons in 2D Dirac crystals.
    Kazemian S; Fanchini G
    J Phys Condens Matter; 2023 May; 35(32):. PubMed ID: 37080212
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D continuum phonon model for group-IV 2D materials.
    Willatzen M; Lew Yan Voon LC; Gandi AN; Schwingenschlögl U
    Beilstein J Nanotechnol; 2017; 8():1345-1356. PubMed ID: 28690970
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular dynamics study on the contribution of anisotropic phonon transmission to thermal conductivity of silicon.
    Cheng C; Wang S
    J Phys Condens Matter; 2022 Sep; 34(43):. PubMed ID: 35995038
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ab initio optimization of phonon drag effect for lower-temperature thermoelectric energy conversion.
    Zhou J; Liao B; Qiu B; Huberman S; Esfarjani K; Dresselhaus MS; Chen G
    Proc Natl Acad Sci U S A; 2015 Dec; 112(48):14777-82. PubMed ID: 26627231
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Giant thermopower and power factor in magic angle twisted bilayer graphene at low temperature.
    Kubakaddi SS
    J Phys Condens Matter; 2021 May; 33(24):. PubMed ID: 33752194
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lattice thermal conductivity of borophene from first principle calculation.
    Xiao H; Cao W; Ouyang T; Guo S; He C; Zhong J
    Sci Rep; 2017 Apr; 7():45986. PubMed ID: 28374853
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantum Oscillations of the Energy Loss Rate of Hot Electrons in Graphene at Strong Magnetic Fields.
    Tsaousidou M; Kubakaddi SS
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984154
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct probing of phonon mode specific electron-phonon scatterings in two-dimensional semiconductor transition metal dichalcogenides.
    Lee DH; Choi SJ; Kim H; Kim YS; Jung S
    Nat Commun; 2021 Jul; 12(1):4520. PubMed ID: 34312387
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optical Generation and Detection of Local Nonequilibrium Phonons in Suspended Graphene.
    Sullivan S; Vallabhaneni A; Kholmanov I; Ruan X; Murthy J; Shi L
    Nano Lett; 2017 Mar; 17(3):2049-2056. PubMed ID: 28218545
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The first-principles and BTE investigation of phonon transport in 1T-TiSe
    Wang ZL; Chen G; Zhang X; Tang D
    Phys Chem Chem Phys; 2021 Jan; 23(2):1627-1638. PubMed ID: 33410842
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phonon Dynamics and Transport Properties of Copper Thiocyanate and Copper Selenocyanate Pseudohalides.
    Singh N; Anjum D; Das G; Qattan I; Patole S; Sajjad M
    ACS Omega; 2020 Nov; 5(44):28637-28642. PubMed ID: 33195916
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Two-dimensional phonon transport in graphene.
    Nika DL; Balandin AA
    J Phys Condens Matter; 2012 Jun; 24(23):233203. PubMed ID: 22562955
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Direct observation of large electron-phonon interaction effect on phonon heat transport.
    Zhou J; Shin HD; Chen K; Song B; Duncan RA; Xu Q; Maznev AA; Nelson KA; Chen G
    Nat Commun; 2020 Nov; 11(1):6040. PubMed ID: 33247148
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.