These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38657930)

  • 1. The mechanism of epigallocatechin-3-gallate inhibiting the antigenicity of β-lactoglobulin under pH 6.2, 7.4 and 8.2: Multi-spectroscopy and molecular simulation methods.
    Kuang X; Deng Z; Feng B; He R; Chen L; Liang G
    Int J Biol Macromol; 2024 May; 268(Pt 1):131773. PubMed ID: 38657930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Six flavonoids inhibit the antigenicity of β-lactoglobulin by noncovalent interactions: A spectroscopic and molecular docking study.
    Pu P; Zheng X; Jiao L; Chen L; Yang H; Zhang Y; Liang G
    Food Chem; 2021 Mar; 339():128106. PubMed ID: 33152886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of metal ions on the binding reaction of (-)-epigallocatechin gallate to β-lactoglobulin.
    Zhang L; Sahu ID; Xu M; Wang Y; Hu X
    Food Chem; 2017 Apr; 221():1923-1929. PubMed ID: 27979181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preservation of (-)-epigallocatechin-3-gallate antioxidant properties loaded in heat treated β-lactoglobulin nanoparticles.
    Li B; Du W; Jin J; Du Q
    J Agric Food Chem; 2012 Apr; 60(13):3477-84. PubMed ID: 22409289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of binding interaction between β-lactoglobulin and three common polyphenols using multi-spectroscopy and modeling methods.
    Jia J; Gao X; Hao M; Tang L
    Food Chem; 2017 Aug; 228():143-151. PubMed ID: 28317707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in binding behavior of (-)-epigallocatechin gallate to β-lactoglobulin heterodimers (AB) compared to homodimers (A) and (B).
    Keppler JK; Martin D; Garamus VM; Schwarz K
    J Mol Recognit; 2015 Nov; 28(11):656-66. PubMed ID: 26038095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of β-lactoglobulin-epigallocatechin gallate interactions: the antioxidant capacity and effects of polyphenols under different heating conditions in polyphenolic-protein interactions.
    Qie X; Chen Y; Quan W; Wang Z; Zeng M; Qin F; Chen J; He Z
    Food Funct; 2020 May; 11(5):3867-3878. PubMed ID: 32426776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Galloyl moieties enhance the binding of (-)-epigallocatechin-3-gallate to β-lactoglobulin: A spectroscopic analysis.
    Zhang L; Wang Y; Xu M; Hu X
    Food Chem; 2017 Dec; 237():39-45. PubMed ID: 28764011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-encapsulation of (-)-epigallocatechin-3-gallate and piceatannol/oxyresveratrol in β-lactoglobulin: effect of ligand-protein binding on the antioxidant activity, stability, solubility and cytotoxicity.
    Liu T; Liu M; Liu H; Ren Y; Zhao Y; Yan H; Wang Q; Zhang N; Ding Z; Wang Z
    Food Funct; 2021 Aug; 12(16):7126-7144. PubMed ID: 34180492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antigenicity of β-lactoglobulin reduced by combining with oleic acid during dynamic high-pressure microfluidization: Multi-spectroscopy and molecule dynamics simulation analysis.
    Zhong J; Fu S; Yu H; Zhou L; Liu W; Liu C; Prakash S
    J Dairy Sci; 2019 Jan; 102(1):145-154. PubMed ID: 30343918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of processing on physicochemical characteristics and bioefficacy of β-lactoglobulin-epigallocatechin-3-gallate complexes.
    Lestringant P; Guri A; Gülseren I; Relkin P; Corredig M
    J Agric Food Chem; 2014 Aug; 62(33):8357-64. PubMed ID: 25077960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Covalent modification of β-lactoglobulin by (-)-epigallocatechin-3-gallate results in a novel antioxidant molecule.
    Tao F; Xiao C; Chen W; Zhang Y; Pan J; Jia Z
    Int J Biol Macromol; 2019 Apr; 126():1186-1191. PubMed ID: 30615967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental and computational studies on the mechanism of the β-lactoglobulin-derived peptide inhibiting the antigenicity of β-lactoglobulin.
    Chen L; Yang H; Jiao L; Pu P; Zheng X; Liang G
    Food Chem; 2022 Nov; 393():133333. PubMed ID: 35661607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational changes of β-lactoglobulin induced by shear, heat, and pH-Effects on antigenicity.
    Rahaman T; Vasiljevic T; Ramchandran L
    J Dairy Sci; 2015 Jul; 98(7):4255-65. PubMed ID: 25912859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Silico Investigations on the Synergistic Binding Mechanism of Functional Compounds with Beta-Lactoglobulin.
    Meng T; Wang Z; Zhang H; Zhao Z; Huang W; Xu L; Liu M; Li J; Yan H
    Molecules; 2024 Feb; 29(5):. PubMed ID: 38474468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of antigenicity and conformational changes to β-lactoglobulin following kestose glycation reaction with and without dynamic high-pressure microfluidization treatment.
    Zhong J; Yu H; Tu Y; Zhou L; Liu W; Luo S; Liu C; Prakash S
    Food Chem; 2019 Apr; 278():491-496. PubMed ID: 30583402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new site-specific monoPEGylated β-lactoglobulin at the N-terminal: Effect of different molecular weights of mPEG on its conformation and antigenicity.
    Luo S; Ji L; Zhou L; Chen T; Zhong J; Liu W; Liu C
    Food Chem; 2021 May; 343():128402. PubMed ID: 33406572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled release and antioxidant activity of chitosan and β-lactoglobulin complex nanoparticles loaded with epigallocatechin gallate.
    Dai W; Ruan C; Sun Y; Gao X; Liang J
    Colloids Surf B Biointerfaces; 2020 Apr; 188():110802. PubMed ID: 31958618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of binding interaction between (-)-epigallocatechin (EGC) and β-lactoglobulin by multi-spectroscopic method.
    Wu X; Wu H; Liu M; Liu Z; Xu H; Lai F
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Nov; 82(1):164-8. PubMed ID: 21820944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of β-lactoglobulin/gum arabic complex nanoparticles for encapsulation and controlled release of EGCG in simulated gastrointestinal digestion model.
    Gao J; Mao Y; Xiang C; Cao M; Ren G; Wang K; Ma X; Wu D; Xie H
    Food Chem; 2021 Aug; 354():129516. PubMed ID: 33744663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.