BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38658079)

  • 1. Preparation, assay, and application of 4-fluorothreonine transaldolase from Streptomyces sp. MA37 for β-hydroxyl amino acid derivatives.
    Maglangit F; Deng H
    Methods Enzymol; 2024; 696():179-199. PubMed ID: 38658079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An unusual metal-bound 4-fluorothreonine transaldolase from Streptomyces sp. MA37 catalyses promiscuous transaldol reactions.
    Wu L; Tong MH; Raab A; Fang Q; Wang S; Kyeremeh K; Yu Y; Deng H
    Appl Microbiol Biotechnol; 2020 May; 104(9):3885-3896. PubMed ID: 32140842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peculiarities of promiscuous L-threonine transaldolases for enantioselective synthesis of β-hydroxy-α-amino acids.
    Wang S; Deng H
    Appl Microbiol Biotechnol; 2021 May; 105(9):3507-3520. PubMed ID: 33900425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorinated natural products: the biosynthesis of fluoroacetate and 4-fluorothreonine in Streptomyces cattleya.
    Murphy CD; Schaffrath C; O'Hagan D
    Chemosphere; 2003 Jul; 52(2):455-61. PubMed ID: 12738270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An L-threonine transaldolase is required for L-threo-β-hydroxy-α-amino acid assembly during obafluorin biosynthesis.
    Scott TA; Heine D; Qin Z; Wilkinson B
    Nat Commun; 2017 Jun; 8():15935. PubMed ID: 28649989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into fluorometabolite biosynthesis in Streptomyces cattleya DSM46488 through genome sequence and knockout mutants.
    Zhao C; Li P; Deng Z; Ou HY; McGlinchey RP; O'Hagan D
    Bioorg Chem; 2012 Oct; 44():1-7. PubMed ID: 22858315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro reconstituted biotransformation of 4-fluorothreonine from fluoride ion: application of the fluorinase.
    Deng H; Cross SM; McGlinchey RP; Hamilton JT; O'Hagan D
    Chem Biol; 2008 Dec; 15(12):1268-76. PubMed ID: 19101471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scalable and Selective β-Hydroxy-α-Amino Acid Synthesis Catalyzed by Promiscuous l-Threonine Transaldolase ObiH.
    Doyon TJ; Kumar P; Thein S; Kim M; Stitgen A; Grieger AM; Madigan C; Willoughby PH; Buller AR
    Chembiochem; 2022 Jan; 23(2):e202100577. PubMed ID: 34699683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation of an aldehyde dehydrogenase involved in the oxidation of fluoroacetaldehyde to fluoroacetate in Streptomyces cattleya.
    Murphy CD; Moss SJ; O'Hagan D
    Appl Environ Microbiol; 2001 Oct; 67(10):4919-21. PubMed ID: 11571203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-enzyme cascade for improving β-hydroxy-α-amino acids production by engineering L-threonine transaldolase and combining acetaldehyde elimination system.
    Xu L; Wang LC; Su BM; Xu XQ; Lin J
    Bioresour Technol; 2020 Aug; 310():123439. PubMed ID: 32361648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of fluorinases from Streptomyces sp MA37, Norcardia brasiliensis, and Actinoplanes sp N902-109 by genome mining.
    Deng H; Ma L; Bandaranayaka N; Qin Z; Mann G; Kyeremeh K; Yu Y; Shepherd T; Naismith JH; O'Hagan D
    Chembiochem; 2014 Feb; 15(3):364-8. PubMed ID: 24449539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and application of threonine aldolase for synthesis of valuable α-amino, β-hydroxy-building blocks.
    Ligibel M; Moore C; Bruccoleri R; Snajdrova R
    Biochim Biophys Acta Proteins Proteom; 2020 Feb; 1868(2):140323. PubMed ID: 31740414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amalgamation of nucleosides and amino acids in antibiotic biosynthesis: discovery of an L-threonine:uridine-5'-aldehyde transaldolase.
    Barnard-Britson S; Chi X; Nonaka K; Spork AP; Tibrewal N; Goswami A; Pahari P; Ducho C; Rohr J; Van Lanen SG
    J Am Chem Soc; 2012 Nov; 134(45):18514-7. PubMed ID: 23110675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of fluorinated amino acids by low-specificity, promiscuous aldolases coupled to in situ fluorodonor generation.
    De Maria A; Nieto-Domínguez M; Nikel PI
    Methods Enzymol; 2024; 696():199-229. PubMed ID: 38658080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defluorination of 4-fluorothreonine by threonine deaminase.
    Wu L; Deng H
    Org Biomol Chem; 2020 Aug; 18(32):6236-6240. PubMed ID: 32729605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of the adenylation domain Thr1 involved in the biosynthesis of 4-chlorothreonine in Streptomyces sp. OH-5093-protein flexibility and molecular bases of substrate specificity.
    Scaglione A; Fullone MR; Montemiglio LC; Parisi G; Zamparelli C; Vallone B; Savino C; Grgurina I
    FEBS J; 2017 Sep; 284(18):2981-2999. PubMed ID: 28704585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of 5-Fluoro-5-Deoxy-Ribulose as a Shunt Fluorometabolite in
    Wu L; Tong MH; Kyeremeh K; Deng H
    Biomolecules; 2020 Jul; 10(7):. PubMed ID: 32664266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosynthesis of fluorothreonine and fluoroacetic acid by the thienamycin producer, Streptomyces cattleya.
    Sanada M; Miyano T; Iwadare S; Williamson JM; Arison BH; Smith JL; Douglas AW; Liesch JM; Inamine E
    J Antibiot (Tokyo); 1986 Feb; 39(2):259-65. PubMed ID: 3082840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The transaldolase family: new synthetic opportunities from an ancient enzyme scaffold.
    Samland AK; Rale M; Sprenger GA; Fessner WD
    Chembiochem; 2011 Jul; 12(10):1454-74. PubMed ID: 21574238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adherence to Bürgi-Dunitz stereochemical principles requires significant structural rearrangements in Schiff-base formation: insights from transaldolase complexes.
    Light SH; Minasov G; Duban ME; Anderson WF
    Acta Crystallogr D Biol Crystallogr; 2014 Feb; 70(Pt 2):544-52. PubMed ID: 24531488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.