BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 38658080)

  • 1. Synthesis of fluorinated amino acids by low-specificity, promiscuous aldolases coupled to in situ fluorodonor generation.
    De Maria A; Nieto-Domínguez M; Nikel PI
    Methods Enzymol; 2024; 696():199-229. PubMed ID: 38658080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and application of threonine aldolase for synthesis of valuable α-amino, β-hydroxy-building blocks.
    Ligibel M; Moore C; Bruccoleri R; Snajdrova R
    Biochim Biophys Acta Proteins Proteom; 2020 Feb; 1868(2):140323. PubMed ID: 31740414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expanding the threonine aldolase toolbox for the asymmetric synthesis of tertiary α-amino acids.
    Fesko K; Strohmeier GA; Breinbauer R
    Appl Microbiol Biotechnol; 2015 Nov; 99(22):9651-61. PubMed ID: 26189018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Threonine aldolases: perspectives in engineering and screening the enzymes with enhanced substrate and stereo specificities.
    Fesko K
    Appl Microbiol Biotechnol; 2016 Mar; 100(6):2579-90. PubMed ID: 26810201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a growth-dependent selection system for identification of L-threonine aldolases.
    Bulut D; Gröger H; Hummel W
    Appl Microbiol Biotechnol; 2015 Jul; 99(14):5875-83. PubMed ID: 25616526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progress in using threonine aldolases for preparative synthesis.
    Beaudoin SF; Hanna MP; Ghiviriga I; Stewart JD
    Enzyme Microb Technol; 2018 Dec; 119():1-9. PubMed ID: 30243380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fluoride-responsive genetic circuit enables in vivo biofluorination in engineered Pseudomonas putida.
    Calero P; Volke DC; Lowe PT; Gotfredsen CH; O'Hagan D; Nikel PI
    Nat Commun; 2020 Oct; 11(1):5045. PubMed ID: 33028813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Catalytic mechanism, molecular engineering and applications of threonine aldolases].
    Chen Q; Chen X; Hao J; Zhu D
    Sheng Wu Gong Cheng Xue Bao; 2021 Dec; 37(12):4215-4230. PubMed ID: 34984869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the catalytic mechanism and stereospecificity of Escherichia coli L-threonine aldolase.
    di Salvo ML; Remesh SG; Vivoli M; Ghatge MS; Paiardini A; D'Aguanno S; Safo MK; Contestabile R
    FEBS J; 2014 Jan; 281(1):129-45. PubMed ID: 24165453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Threonine aldolases-screening, properties and applications in the synthesis of non-proteinogenic beta-hydroxy-alpha-amino acids.
    Dückers N; Baer K; Simon S; Gröger H; Hummel W
    Appl Microbiol Biotechnol; 2010 Sep; 88(2):409-24. PubMed ID: 20683718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemoenzymatic Platform for Synthesis of Chiral Organofluorines Based on Type II Aldolases.
    Fang J; Hait D; Head-Gordon M; Chang MCY
    Angew Chem Int Ed Engl; 2019 Aug; 58(34):11841-11845. PubMed ID: 31240790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Threonine aldolases.
    Franz SE; Stewart JD
    Adv Appl Microbiol; 2014; 88():57-101. PubMed ID: 24767426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Serine hydroxymethyltransferase and threonine aldolase: are they identical?
    Ogawa H; Gomi T; Fujioka M
    Int J Biochem Cell Biol; 2000 Mar; 32(3):289-301. PubMed ID: 10716626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Directed evolution of D-2-keto-3-deoxy-6-phosphogluconate aldolase to new variants for the efficient synthesis of D- and L-sugars.
    Fong S; Machajewski TD; Mak CC; Wong C
    Chem Biol; 2000 Nov; 7(11):873-83. PubMed ID: 11094340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocatalytic Asymmetric Construction of Secondary and Tertiary Fluorides from β-Fluoro-α-Ketoacids.
    Fang J; Turner LE; Chang MCY
    Angew Chem Int Ed Engl; 2022 May; 61(21):e202201602. PubMed ID: 35165991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer-aided directed evolution ofl-threonine aldolase for asymmetric biocatalytic synthesis of a chloramphenicol intermediate.
    Cai B; Bocola M; Zhou A; Sun F; Xu Q; Yang J; Shen T; Zhang Z; Sun L; Ji Y; Bong YK; Daussmann T; Chen H
    Bioorg Med Chem; 2022 Aug; 68():116880. PubMed ID: 35714535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluoro amino acids: a rarity in nature, yet a prospect for protein engineering.
    Odar C; Winkler M; Wiltschi B
    Biotechnol J; 2015 Mar; 10(3):427-46. PubMed ID: 25728393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic Photoenzymatic Catalysis Enables Synthesis of
    Ouyang Y; Page CG; Bilodeau C; Hyster TK
    J Am Chem Soc; 2024 May; 146(20):13754-13759. PubMed ID: 38739748
    [No Abstract]   [Full Text] [Related]  

  • 19. Molecular basis of E. coli L-threonine aldolase catalytic inactivation at low pH.
    Remesh SG; Ghatge MS; Ahmed MH; Musayev FN; Gandhi A; Chowdhury N; di Salvo ML; Kellogg GE; Contestabile R; Schirch V; Safo MK
    Biochim Biophys Acta; 2015 Apr; 1854(4):278-83. PubMed ID: 25560296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering of l-threonine aldolase for the preparation of 4-(methylsulfonyl)phenylserine, an important intermediate for the synthesis of florfenicol and thiamphenicol.
    Liu Z; Chen X; Chen Q; Feng J; Wang M; Wu Q; Zhu D
    Enzyme Microb Technol; 2020 Jun; 137():109551. PubMed ID: 32423678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.