BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 38658129)

  • 1. Stable feature selection utilizing Graph Convolutional Neural Network and Layer-wise Relevance Propagation for biomarker discovery in breast cancer.
    Chereda H; Leha A; Beißbarth T
    Artif Intell Med; 2024 May; 151():102840. PubMed ID: 38658129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Explaining decisions of graph convolutional neural networks: patient-specific molecular subnetworks responsible for metastasis prediction in breast cancer.
    Chereda H; Bleckmann A; Menck K; Perera-Bel J; Stegmaier P; Auer F; Kramer F; Leha A; Beißbarth T
    Genome Med; 2021 Mar; 13(1):42. PubMed ID: 33706810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction and interpretation of cancer survival using graph convolution neural networks.
    Ramirez R; Chiu YC; Zhang S; Ramirez J; Chen Y; Huang Y; Jin YF
    Methods; 2021 Aug; 192():120-130. PubMed ID: 33484826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing the prediction of IDC breast cancer staging from gene expression profiles using hybrid feature selection methods and deep learning architecture.
    Kishore A; Venkataramana L; Prasad DVV; Mohan A; Jha B
    Med Biol Eng Comput; 2023 Nov; 61(11):2895-2919. PubMed ID: 37530887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Network-based drug sensitivity prediction.
    Ahmed KT; Park S; Jiang Q; Yeu Y; Hwang T; Zhang W
    BMC Med Genomics; 2020 Dec; 13(Suppl 11):193. PubMed ID: 33371891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrating ensemble systems biology feature selection and bimodal deep neural network for breast cancer prognosis prediction.
    Cheng LH; Hsu TC; Lin C
    Sci Rep; 2021 Jul; 11(1):14914. PubMed ID: 34290286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Data Integration Using Advances in Machine Learning in Drug Discovery and Molecular Biology.
    Hudson IL
    Methods Mol Biol; 2021; 2190():167-184. PubMed ID: 32804365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated biomarker candidate discovery in imaging mass spectrometry data through spatially localized Shapley additive explanations.
    Tideman LEM; Migas LG; Djambazova KV; Patterson NH; Caprioli RM; Spraggins JM; Van de Plas R
    Anal Chim Acta; 2021 Sep; 1177():338522. PubMed ID: 34482894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional MRI using layer-wise relevance propagation.
    Eitel F; Soehler E; Bellmann-Strobl J; Brandt AU; Ruprecht K; Giess RM; Kuchling J; Asseyer S; Weygandt M; Haynes JD; Scheel M; Paul F; Ritter K
    Neuroimage Clin; 2019; 24():102003. PubMed ID: 31634822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utilizing Molecular Network Information via Graph Convolutional Neural Networks to Predict Metastatic Event in Breast Cancer.
    Chereda H; Bleckmann A; Kramer F; Leha A; Beissbarth T
    Stud Health Technol Inform; 2019 Sep; 267():181-186. PubMed ID: 31483271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prognostic gene signatures for patient stratification in breast cancer: accuracy, stability and interpretability of gene selection approaches using prior knowledge on protein-protein interactions.
    Cun Y; Fröhlich HF
    BMC Bioinformatics; 2012 May; 13():69. PubMed ID: 22548963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An embedded feature selection method based on generalized classifier neural network for cancer classification.
    Naik AK; Kuppili V
    Comput Biol Med; 2024 Jan; 168():107677. PubMed ID: 37988786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep learning on graphs for multi-omics classification of COPD.
    Zhuang Y; Xing F; Ghosh D; Hobbs BD; Hersh CP; Banaei-Kashani F; Bowler RP; Kechris K
    PLoS One; 2023; 18(4):e0284563. PubMed ID: 37083575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel biomarker selection method combining graph neural network and gene relationships applied to microarray data.
    Xie W; Li W; Zhang S; Wang L; Yang J; Zhao D
    BMC Bioinformatics; 2022 Jul; 23(1):303. PubMed ID: 35883022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relevance-based channel selection in motor imagery brain-computer interface.
    Nagarajan A; Robinson N; Guan C
    J Neural Eng; 2023 Jan; 20(1):. PubMed ID: 36548997
    [No Abstract]   [Full Text] [Related]  

  • 16. Classification of Cancer Types Using Graph Convolutional Neural Networks.
    Ramirez R; Chiu YC; Hererra A; Mostavi M; Ramirez J; Chen Y; Huang Y; Jin YF
    Front Phys; 2020 Jun; 8():. PubMed ID: 33437754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel candidate disease gene prioritization method using deep graph convolutional networks and semi-supervised learning.
    Azadifar S; Ahmadi A
    BMC Bioinformatics; 2022 Oct; 23(1):422. PubMed ID: 36241966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DeepXplainer: An interpretable deep learning based approach for lung cancer detection using explainable artificial intelligence.
    Wani NA; Kumar R; Bedi J
    Comput Methods Programs Biomed; 2024 Jan; 243():107879. PubMed ID: 37897989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling and identification of characteristic kinematic features preceding freezing of gait with convolutional neural networks and layer-wise relevance propagation.
    Filtjens B; Ginis P; Nieuwboer A; Afzal MR; Spildooren J; Vanrumste B; Slaets P
    BMC Med Inform Decis Mak; 2021 Dec; 21(1):341. PubMed ID: 34876110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Essential genes identification model based on sequence feature map and graph convolutional neural network.
    Hu W; Li M; Xiao H; Guan L
    BMC Genomics; 2024 Jan; 25(1):47. PubMed ID: 38200437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.