BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 38658197)

  • 21. Microbiological insight into various underground gas storages in Vienna Basin focusing on methanogenic
    Hanišáková N; Vítězová M; Vítěz T; Kushkevych I; Kotrlová E; Novák D; Lochman J; Zavada R
    Front Microbiol; 2023; 14():1293506. PubMed ID: 38188570
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microbial community structure in deep natural gas-bearing aquifers subjected to sulfate-containing fluid injection.
    Katayama T; Yoshioka H; Yamanaka T; Takeuchi M; Muramoto Y; Usami J; Ikeda H; Sakata S
    J Biosci Bioeng; 2019 Jan; 127(1):45-51. PubMed ID: 30082219
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coupling of Methanothermobacter thermautotrophicus methane formation and growth in fed-batch and continuous cultures under different H2 gassing regimens.
    de Poorter LM; Geerts WJ; Keltjens JT
    Appl Environ Microbiol; 2007 Feb; 73(3):740-9. PubMed ID: 17142379
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative proteomic analysis of Methanothermobacter thermautotrophicus reveals methane formation from H
    Liu C; Mao L; Zheng X; Yuan J; Hu B; Cai Y; Xie H; Peng X; Ding X
    Microbiologyopen; 2019 May; 8(5):e00715. PubMed ID: 30260585
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characteristics of in-situ hydrogen biomethanation at mesophilic and thermophilic temperatures.
    Jiang H; Wu F; Wang Y; Feng L; Zhou H; Li Y
    Bioresour Technol; 2021 Oct; 337():125455. PubMed ID: 34320739
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phenotypic and genomic characterization of
    Ale Enriquez F; Ahring BK
    Appl Environ Microbiol; 2024 May; 90(5):e0026824. PubMed ID: 38619268
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular Evidence for an Active Microbial Methane Cycle in Subsurface Serpentinite-Hosted Groundwaters in the Samail Ophiolite, Oman.
    Kraus EA; Nothaft D; Stamps BW; Rempfert KR; Ellison ET; Matter JM; Templeton AS; Boyd ES; Spear JR
    Appl Environ Microbiol; 2021 Jan; 87(2):. PubMed ID: 33127818
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Association of hydrogen metabolism with methanogenesis in Lake Mendota sediments.
    Winfrey MR; Nelson DR; Klevickis SC; Zeikus JG
    Appl Environ Microbiol; 1977 Feb; 33(2):312-8. PubMed ID: 15511
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enrichment and detection of microorganisms involved in direct and indirect methanogenesis from methanol in an anaerobic thermophilic bioreactor.
    Roest K; Altinbas M; Paulo PL; Heilig HG; Akkermans AD; Smidt H; de Vos WM; Stams AJ
    Microb Ecol; 2005 Oct; 50(3):440-6. PubMed ID: 16328652
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibition of methanogenesis by sulphate reducing bacteria competing for transferred hydrogen.
    Abram JW; Nedwell DB
    Arch Microbiol; 1978 Apr; 117(1):89-92. PubMed ID: 678014
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rapid microbial methanogenesis during CO
    Tyne RL; Barry PH; Lawson M; Byrne DJ; Warr O; Xie H; Hillegonds DJ; Formolo M; Summers ZM; Skinner B; Eiler JM; Ballentine CJ
    Nature; 2021 Dec; 600(7890):670-674. PubMed ID: 34937895
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabolic activity of subterranean microbial communities in deep granitic groundwater supplemented with methane and H(2).
    Pedersen K
    ISME J; 2013 Apr; 7(4):839-49. PubMed ID: 23235288
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deep microbial life in high-quality granitic groundwater from geochemically and geographically distinct underground boreholes.
    Ino K; Konno U; Kouduka M; Hirota A; Togo YS; Fukuda A; Komatsu D; Tsunogai U; Tanabe AS; Yamamoto S; Iwatsuki T; Mizuno T; Ito K; Suzuki Y
    Environ Microbiol Rep; 2016 Apr; 8(2):285-94. PubMed ID: 26743638
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Insights into microbial community structure and function from a shallow, simulated CO
    Gulliver D; Lipus D; Ross D; Bibby K
    Environ Microbiol Rep; 2019 Jun; 11(3):338-351. PubMed ID: 29984552
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Growth of desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria.
    Bryant MP; Campbell LL; Reddy CA; Crabill MR
    Appl Environ Microbiol; 1977 May; 33(5):1162-9. PubMed ID: 879775
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Geochemical Influence on Microbial Communities at CO
    Ham B; Choi BY; Chae GT; Kirk MF; Kwon MJ
    Front Microbiol; 2017; 8():2203. PubMed ID: 29170659
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrogen 'leakage' during methanogenesis from methanol and methylamine: implications for anaerobic carbon degradation pathways in aquatic sediments.
    Finke N; Hoehler TM; Jørgensen BB
    Environ Microbiol; 2007 Apr; 9(4):1060-71. PubMed ID: 17359276
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Viability and adaptation potential of indigenous microorganisms from natural gas field fluids in high pressure incubations with supercritical CO2.
    Frerichs J; Rakoczy J; Ostertag-Henning C; Krüger M
    Environ Sci Technol; 2014 Jan; 48(2):1306-14. PubMed ID: 24320192
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental assessment of CO2-mineral-toxic ion interactions in a simplified freshwater aquifer: implications for CO2 leakage from deep geological storage.
    Montes-Hernandez G; Renard F; Lafay R
    Environ Sci Technol; 2013 Jun; 47(12):6247-53. PubMed ID: 23725478
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Subterranean microbial populations metabolize hydrogen and acetate under in situ conditions in granitic groundwater at 450 m depth in the Äspö Hard Rock Laboratory, Sweden.
    Pedersen K
    FEMS Microbiol Ecol; 2012 Jul; 81(1):217-29. PubMed ID: 22452510
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.