These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 38658197)

  • 41. Characterization of metabolic performance of methanogenic granules treating brewery wastewater: role of sulfate-reducing bacteria.
    Wu WM; Hickey RF; Zeikus JG
    Appl Environ Microbiol; 1991 Dec; 57(12):3438-49. PubMed ID: 1785921
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Methanogenic food web in the gut contents of methane-emitting earthworm Eudrilus eugeniae from Brazil.
    Schulz K; Hunger S; Brown GG; Tsai SM; Cerri CC; Conrad R; Drake HL
    ISME J; 2015 Aug; 9(8):1778-92. PubMed ID: 25615437
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Temperature and Inoculum Origin Influence the Performance of Ex-Situ Biological Hydrogen Methanation.
    Figeac N; Trably E; Bernet N; Delgenès JP; Escudié R
    Molecules; 2020 Dec; 25(23):. PubMed ID: 33271799
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Relevance of deep-subsurface microbiology for underground gas storage and geothermal energy production.
    Gniese C; Bombach P; Rakoczy J; Hoth N; Schlömann M; Richnow HH; Krüger M
    Adv Biochem Eng Biotechnol; 2014; 142():95-121. PubMed ID: 24311044
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Decompression sickness risk in rats by microbial removal of dissolved gas.
    Kayar SR; Miller TL; Wolin MJ; Aukhert EO; Axley MJ; Kiesow LA
    Am J Physiol; 1998 Sep; 275(3):R677-82. PubMed ID: 9728062
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In situ bacterial colonization of compacted bentonite under deep geological high-level radioactive waste repository conditions.
    Chi Fru E; Athar R
    Appl Microbiol Biotechnol; 2008 Jun; 79(3):499-510. PubMed ID: 18379777
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nitrogen Fixation in Thermophilic Chemosynthetic Microbial Communities Depending on Hydrogen, Sulfate, and Carbon Dioxide.
    Nishihara A; Haruta S; McGlynn SE; Thiel V; Matsuura K
    Microbes Environ; 2018 Mar; 33(1):10-18. PubMed ID: 29367473
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bioconversion of carbon dioxide to methane using hydrogen and hydrogenotrophic methanogens.
    Zabranska J; Pokorna D
    Biotechnol Adv; 2018; 36(3):707-720. PubMed ID: 29248685
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Syngas biomethanation: effect of biomass-gas ratio, syngas composition and pH buffer.
    Li C; Zhu X; Angelidaki I
    Bioresour Technol; 2021 Dec; 342():125997. PubMed ID: 34583116
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enrichment of rare methanogenic Archaea shows their important ecological role in natural high-CO
    Jia Z; Lipus D; Burckhardt O; Bussert R; Sondermann M; Bartholomäus A; Wagner D; Kallmeyer J
    Front Microbiol; 2023; 14():1105259. PubMed ID: 37293225
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Anaerobic metabolism of immediate methane precursors in Lake Mendota.
    Winfrey MR; Zeikus JG
    Appl Environ Microbiol; 1979 Feb; 37(2):244-53. PubMed ID: 434807
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Microbial hydrogen sinks in the sand-bentonite backfill material for the deep geological disposal of radioactive waste.
    Rolland C; Burzan N; Leupin OX; Boylan AA; Frutschi M; Wang S; Jacquemin N; Bernier-Latmani R
    Front Microbiol; 2024; 15():1359677. PubMed ID: 38690357
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-water lake. II. Inhibition experiments.
    Cappenberg TE
    Antonie Van Leeuwenhoek; 1974; 40(2):297-306. PubMed ID: 4365468
    [No Abstract]   [Full Text] [Related]  

  • 54. Diversity of prokaryotes and methanogenesis in deep subsurface sediments from the Nankai Trough, Ocean Drilling Program Leg 190.
    Newberry CJ; Webster G; Cragg BA; Parkes RJ; Weightman AJ; Fry JC
    Environ Microbiol; 2004 Mar; 6(3):274-87. PubMed ID: 14871211
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Consumption of methane and CO2 by methanotrophic microbial mats from gas seeps of the anoxic Black Sea.
    Treude T; Orphan V; Knittel K; Gieseke A; House CH; Boetius A
    Appl Environ Microbiol; 2007 Apr; 73(7):2271-83. PubMed ID: 17277205
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Anaerobic oxidation of methane associated with sulfate reduction in a natural freshwater gas source.
    Timmers PH; Suarez-Zuluaga DA; van Rossem M; Diender M; Stams AJ; Plugge CM
    ISME J; 2016 Jun; 10(6):1400-12. PubMed ID: 26636551
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microbial Reduction of Fe(III) and SO
    Lee JH; Lee BJ
    Microb Ecol; 2018 Jul; 76(1):182-191. PubMed ID: 29177753
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hydrogen concentrations in methane-forming cells probed by the ratios of reduced and oxidized coenzyme F420.
    de Poorter LMI; Geerts WJ; Keltjens JT
    Microbiology (Reading); 2005 May; 151(Pt 5):1697-1705. PubMed ID: 15870477
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identifying and Understanding Microbial Methanogenesis in CO
    Tyne RL; Barry PH; Lawson M; Lloyd KG; Giovannelli D; Summers ZM; Ballentine CJ
    Environ Sci Technol; 2023 Jul; 57(26):9459-9473. PubMed ID: 37327355
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Impact of carbon monoxide on performance and microbial community of extreme-thermophilic hydrogenotrophic methanation in horizontal rotary bioreactor.
    Zheng X; Zhou W; Min B; Zhou Y; Xie L
    Bioresour Technol; 2023 Sep; 384():129248. PubMed ID: 37247793
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.