These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 38658513)
1. A hybrid multi-scale fusion paradigm for AQI prediction based on the secondary decomposition. Deng Y; Xu T; Sun Z Environ Sci Pollut Res Int; 2024 May; 31(22):32694-32713. PubMed ID: 38658513 [TBL] [Abstract][Full Text] [Related]
2. An AQI decomposition ensemble model based on SSA-LSTM using improved AMSSA-VMD decomposition reconstruction technique. Wang K; Fan X; Yang X; Zhou Z Environ Res; 2023 Sep; 232():116365. PubMed ID: 37301497 [TBL] [Abstract][Full Text] [Related]
3. A multi-scale evolutionary deep learning model based on CEEMDAN, improved whale optimization algorithm, regularized extreme learning machine and LSTM for AQI prediction. Ji C; Zhang C; Hua L; Ma H; Nazir MS; Peng T Environ Res; 2022 Dec; 215(Pt 1):114228. PubMed ID: 36084674 [TBL] [Abstract][Full Text] [Related]
4. Optimized air quality management based on air quality index prediction and air pollutants identification in representative cities in China. Guo Z; Jing X; Ling Y; Yang Y; Jing N; Yuan R; Liu Y Sci Rep; 2024 Aug; 14(1):17923. PubMed ID: 39095454 [TBL] [Abstract][Full Text] [Related]
5. A new hybrid prediction model of air quality index based on secondary decomposition and improved kernel extreme learning machine. Li G; Tang Y; Yang H Chemosphere; 2022 Oct; 305():135348. PubMed ID: 35718028 [TBL] [Abstract][Full Text] [Related]
6. A novel framework for high resolution air quality index prediction with interpretable artificial intelligence and uncertainties estimation. Wu J; Chen X; Li R; Wang A; Huang S; Li Q; Qi H; Liu M; Cheng H; Wang Z J Environ Manage; 2024 Apr; 357():120785. PubMed ID: 38583378 [TBL] [Abstract][Full Text] [Related]
7. A hybrid model for daily air quality index prediction and its performance in the face of impact effect of COVID-19 lockdown. Li Y; Li R Process Saf Environ Prot; 2023 Aug; 176():673-684. PubMed ID: 37350802 [TBL] [Abstract][Full Text] [Related]
8. An ensemble LSTM-based AQI forecasting model with decomposition-reconstruction technique via CEEMDAN and fuzzy entropy. Wu Z; Zhao W; Lv Y Air Qual Atmos Health; 2022; 15(12):2299-2311. PubMed ID: 36196368 [TBL] [Abstract][Full Text] [Related]
9. A novel optimal-hybrid model for daily air quality index prediction considering air pollutant factors. Wu Q; Lin H Sci Total Environ; 2019 Sep; 683():808-821. PubMed ID: 31154159 [TBL] [Abstract][Full Text] [Related]
10. Extraction of multi-scale features enhances the deep learning-based daily PM Dong L; Hua P; Gui D; Zhang J Chemosphere; 2022 Dec; 308(Pt 2):136252. PubMed ID: 36055593 [TBL] [Abstract][Full Text] [Related]
11. A new hybrid optimization prediction model for PM2.5 concentration considering other air pollutants and meteorological conditions. Yang H; Liu Z; Li G Chemosphere; 2022 Nov; 307(Pt 3):135798. PubMed ID: 35964719 [TBL] [Abstract][Full Text] [Related]
12. Combined model of air quality index forecasting based on the combination of complementary empirical mode decomposition and sequence reconstruction. Wang W; Tang Q Environ Pollut; 2023 Jan; 316(Pt 2):120628. PubMed ID: 36370980 [TBL] [Abstract][Full Text] [Related]
13. AQI time series prediction based on a hybrid data decomposition and echo state networks. Liu H; Zhang X Environ Sci Pollut Res Int; 2021 Oct; 28(37):51160-51182. PubMed ID: 33977435 [TBL] [Abstract][Full Text] [Related]
14. A hybrid air pollutant concentration prediction model combining secondary decomposition and sequence reconstruction. Sun W; Huang C Environ Pollut; 2020 Nov; 266(Pt 3):115216. PubMed ID: 32763723 [TBL] [Abstract][Full Text] [Related]
15. A hybrid prediction model of dissolved oxygen concentration based on secondary decomposition and bidirectional gate recurrent unit. Jiao J; Ma Q; Liu F; Zhao L; Huang S Environ Geochem Health; 2024 Mar; 46(4):127. PubMed ID: 38483668 [TBL] [Abstract][Full Text] [Related]
16. Enhanced Air Quality Prediction Using a Coupled DVMD Informer-CNN-LSTM Model Optimized with Dung Beetle Algorithm. Wu Y; Qian C; Huang H Entropy (Basel); 2024 Jun; 26(7):. PubMed ID: 39056897 [TBL] [Abstract][Full Text] [Related]
17. A reduced-form ensemble of short-term air quality forecasting with the Sparrow search algorithm and decomposition error correction. Hu K; Che J Environ Sci Pollut Res Int; 2023 Apr; 30(16):48508-48531. PubMed ID: 36759410 [TBL] [Abstract][Full Text] [Related]
18. Integration of complete ensemble empirical mode decomposition with deep long short-term memory model for particulate matter concentration prediction. Fu M; Le C; Fan T; Prakapovich R; Manko D; Dmytrenko O; Lande D; Shahid S; Yaseen ZM Environ Sci Pollut Res Int; 2021 Dec; 28(45):64818-64829. PubMed ID: 34318419 [TBL] [Abstract][Full Text] [Related]
19. A novel hybrid model for six main pollutant concentrations forecasting based on improved LSTM neural networks. Xu S; Li W; Zhu Y; Xu A Sci Rep; 2022 Aug; 12(1):14434. PubMed ID: 36002466 [TBL] [Abstract][Full Text] [Related]
20. A new hybrid prediction model of PM Yang H; Zhao J; Li G Environ Sci Pollut Res Int; 2022 Sep; 29(44):67214-67241. PubMed ID: 35524096 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]