BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 38658527)

  • 21. Glioblastoma resistance to anti-VEGF therapy is associated with myeloid cell infiltration, stem cell accumulation, and a mesenchymal phenotype.
    Piao Y; Liang J; Holmes L; Zurita AJ; Henry V; Heymach JV; de Groot JF
    Neuro Oncol; 2012 Nov; 14(11):1379-92. PubMed ID: 22965162
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phospholipase D1 is upregulated by vorinostat and confers resistance to vorinostat in glioblastoma.
    Kang DW; Hwang WC; Noh YN; Kang Y; Jang Y; Kim JA; Min DS
    J Cell Physiol; 2021 Jan; 236(1):549-560. PubMed ID: 32869317
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Perifosine enhances bevacizumab-induced apoptosis and therapeutic efficacy by targeting PI3K/AKT pathway in a glioblastoma heterotopic model.
    Ramezani S; Vousooghi N; Ramezani Kapourchali F; Joghataei MT
    Apoptosis; 2017 Aug; 22(8):1025-1034. PubMed ID: 28616662
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vascular mimicry in glioblastoma following anti-angiogenic and anti-20-HETE therapies.
    Angara K; Rashid MH; Shankar A; Ara R; Iskander A; Borin TF; Jain M; Achyut BR; Arbab AS
    Histol Histopathol; 2017 Sep; 32(9):917-928. PubMed ID: 27990624
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rolipram optimizes therapeutic effect of bevacizumab by enhancing proapoptotic, antiproliferative signals in a glioblastoma heterotopic model.
    Ramezani S; Vousooghi N; Ramezani Kapourchali F; Yousefzadeh-Chabok S; Reihanian Z; Alizadeh AM; Khodayari S; Khodayari H
    Life Sci; 2019 Dec; 239():116880. PubMed ID: 31678282
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Monensin inhibits glioblastoma angiogenesis via targeting multiple growth factor receptor signaling.
    Wan W; Zhang X; Huang C; Chen L; Yang X; Bao K; Peng T
    Biochem Biophys Res Commun; 2020 Sep; 530(2):479-484. PubMed ID: 32595038
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Antiangiogenic therapy for glioblastoma: the challenge of translating response rate into efficacy.
    de Groot J; Reardon DA; Batchelor TT
    Am Soc Clin Oncol Educ Book; 2013; ():. PubMed ID: 23714460
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mediators of glioblastoma resistance and invasion during antivascular endothelial growth factor therapy.
    Lucio-Eterovic AK; Piao Y; de Groot JF
    Clin Cancer Res; 2009 Jul; 15(14):4589-99. PubMed ID: 19567589
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Annexin A2-STAT3-Oncostatin M receptor axis drives phenotypic and mesenchymal changes in glioblastoma.
    Matsumoto Y; Ichikawa T; Kurozumi K; Otani Y; Fujimura A; Fujii K; Tomita Y; Hattori Y; Uneda A; Tsuboi N; Kaneda K; Makino K; Date I
    Acta Neuropathol Commun; 2020 Apr; 8(1):42. PubMed ID: 32248843
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Olea europaea leaf extract and bevacizumab synergistically exhibit beneficial efficacy upon human glioblastoma cancer stem cells through reducing angiogenesis and invasion in vitro.
    Tezcan G; Taskapilioglu MO; Tunca B; Bekar A; Demirci H; Kocaeli H; Aksoy SA; Egeli U; Cecener G; Tolunay S
    Biomed Pharmacother; 2017 Jun; 90():713-723. PubMed ID: 28419967
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanisms of tumor development and anti-angiogenic therapy in glioblastoma multiforme.
    Onishi M; Kurozumi K; Ichikawa T; Date I
    Neurol Med Chir (Tokyo); 2013; 53(11):755-63. PubMed ID: 24162241
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bevacizumab dose adjustment to improve clinical outcomes of glioblastoma.
    García-Romero N; Palacín-Aliana I; Madurga R; Carrión-Navarro J; Esteban-Rubio S; Jiménez B; Collazo A; Pérez-Rodríguez F; Ortiz de Mendivil A; Fernández-Carballal C; García-Duque S; Diamantopoulos-Fernández J; Belda-Iniesta C; Prat-Acín R; Sánchez-Gómez P; Calvo E; Ayuso-Sacido A
    BMC Med; 2020 Jun; 18(1):142. PubMed ID: 32564774
    [TBL] [Abstract][Full Text] [Related]  

  • 33. ID1 Is Critical for Tumorigenesis and Regulates Chemoresistance in Glioblastoma.
    Sachdeva R; Wu M; Smiljanic S; Kaskun O; Ghannad-Zadeh K; Celebre A; Isaev K; Morrissy AS; Guan J; Tong J; Chan J; Wilson TM; Al-Omaishi S; Munoz DG; Dirks PB; Moran MF; Taylor MD; Reimand J; Das S
    Cancer Res; 2019 Aug; 79(16):4057-4071. PubMed ID: 31292163
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bevacizumab-based therapy in relapsed glioblastoma: rationale and clinical experience to date.
    Chinot OL
    Expert Rev Anticancer Ther; 2012 Nov; 12(11):1413-27. PubMed ID: 23249106
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hypoxia suppresses cylindromatosis (CYLD) expression to promote inflammation in glioblastoma: possible link to acquired resistance to anti-VEGF therapy.
    Guo J; Shinriki S; Su Y; Nakamura T; Hayashi M; Tsuda Y; Murakami Y; Tasaki M; Hide T; Takezaki T; Kuratsu J; Yamashita S; Ueda M; Li JD; Ando Y; Jono H
    Oncotarget; 2014 Aug; 5(15):6353-64. PubMed ID: 25071012
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cox-2-derived PGE2 induces Id1-dependent radiation resistance and self-renewal in experimental glioblastoma.
    Cook PJ; Thomas R; Kingsley PJ; Shimizu F; Montrose DC; Marnett LJ; Tabar VS; Dannenberg AJ; Benezra R
    Neuro Oncol; 2016 Oct; 18(10):1379-89. PubMed ID: 27022132
    [TBL] [Abstract][Full Text] [Related]  

  • 37. c-Met-mediated endothelial plasticity drives aberrant vascularization and chemoresistance in glioblastoma.
    Huang M; Liu T; Ma P; Mitteer RA; Zhang Z; Kim HJ; Yeo E; Zhang D; Cai P; Li C; Zhang L; Zhao B; Roccograndi L; O'Rourke DM; Dahmane N; Gong Y; Koumenis C; Fan Y
    J Clin Invest; 2016 May; 126(5):1801-14. PubMed ID: 27043280
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recruitment of bone marrow derived cells during anti-angiogenic therapy in GBM: the potential of combination strategies.
    Boer JC; Walenkamp AM; den Dunnen WF
    Crit Rev Oncol Hematol; 2014 Oct; 92(1):38-48. PubMed ID: 24933160
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A new algorithm for a better characterization and timing of the anti-VEGF vascular effect named "normalization".
    El Alaoui-Lasmaili K; Djermoune EH; Tylcz JB; Meng D; Plénat F; Thomas N; Faivre B
    Angiogenesis; 2017 Feb; 20(1):149-162. PubMed ID: 27942994
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Hippo-TAZ axis mediates vascular endothelial growth factor C in glioblastoma-derived exosomes to promote angiogenesis.
    Wang Z; Yuan Y; Ji X; Xiao X; Li Z; Yi X; Zhu Y; Guo T; Wang Y; Chen L; Liu Y
    Cancer Lett; 2021 Aug; 513():1-13. PubMed ID: 34010715
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.