BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38658732)

  • 1. Author Correction: Adenine transversion editors enable precise, efficient A•T-to-C•G base editing in mammalian cells and embryos.
    Chen L; Hong M; Luan C; Gao H; Ru G; Guo X; Zhang D; Zhang S; Li C; Wu J; Randolph PB; Sousa AA; Qu C; Zhu Y; Guan Y; Wang L; Liu M; Feng B; Song G; Liu DR; Li D
    Nat Biotechnol; 2024 Jun; 42(6):987. PubMed ID: 38658732
    [No Abstract]   [Full Text] [Related]  

  • 2. Adenine transversion editors enable precise, efficient A•T-to-C•G base editing in mammalian cells and embryos.
    Chen L; Hong M; Luan C; Gao H; Ru G; Guo X; Zhang D; Zhang S; Li C; Wu J; Randolph PB; Sousa AA; Qu C; Zhu Y; Guan Y; Wang L; Liu M; Feng B; Song G; Liu DR; Li D
    Nat Biotechnol; 2024 Apr; 42(4):638-650. PubMed ID: 37322276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient A·T-to-C·G Base Editing via Adenine Transversion Editors.
    Mahmood MA
    Cell Reprogram; 2023 Oct; 25(5):187-189. PubMed ID: 37725011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of C-to-G transversion in mouse embryos via CG editors.
    Cao T; Liu S; Qiu Y; Gao M; Wu J; Wu G; Liang P; Huang J
    Transgenic Res; 2022 Oct; 31(4-5):445-455. PubMed ID: 35704130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precision genome editing using cytosine and adenine base editors in mammalian cells.
    Huang TP; Newby GA; Liu DR
    Nat Protoc; 2021 Feb; 16(2):1089-1128. PubMed ID: 33462442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Base Editing Landscape Extends to Perform Transversion Mutation.
    Molla KA; Qi Y; Karmakar S; Baig MJ
    Trends Genet; 2020 Dec; 36(12):899-901. PubMed ID: 32951947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly efficient A-to-G base editing by ABE8.17 in rabbits.
    Zhao D; Qian Y; Li J; Li Z; Lai L
    Mol Ther Nucleic Acids; 2022 Mar; 27():1156-1163. PubMed ID: 35282412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis and minimization of cellular RNA editing by DNA adenine base editors.
    Rees HA; Wilson C; Doman JL; Liu DR
    Sci Adv; 2019 May; 5(5):eaax5717. PubMed ID: 31086823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determinants of Base Editing Outcomes from Target Library Analysis and Machine Learning.
    Arbab M; Shen MW; Mok B; Wilson C; Matuszek Ż; Cassa CA; Liu DR
    Cell; 2020 Jul; 182(2):463-480.e30. PubMed ID: 32533916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient C•G-to-G•C base editors developed using CRISPRi screens, target-library analysis, and machine learning.
    Koblan LW; Arbab M; Shen MW; Hussmann JA; Anzalone AV; Doman JL; Newby GA; Yang D; Mok B; Replogle JM; Xu A; Sisley TA; Weissman JS; Adamson B; Liu DR
    Nat Biotechnol; 2021 Nov; 39(11):1414-1425. PubMed ID: 34183861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring C-To-G Base Editing in Rice, Tomato, and Poplar.
    Sretenovic S; Liu S; Li G; Cheng Y; Fan T; Xu Y; Zhou J; Zheng X; Coleman G; Zhang Y; Qi Y
    Front Genome Ed; 2021; 3():756766. PubMed ID: 34713268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correction of the pathogenic mutation in TGM1 gene by adenine base editing in mutant embryos.
    Dang L; Zhou X; Zhong X; Yu W; Huang S; Liu H; Chen Y; Zhang W; Yuan L; Li L; Huang X; Li G; Liu J; Tong G
    Mol Ther; 2022 Jan; 30(1):175-183. PubMed ID: 33974999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [CRISPR/Cas-mediated DNA base editing technology and its application in biomedicine and agriculture].
    Yu C; Mo J; Zhao X; Li G; Zhang X
    Sheng Wu Gong Cheng Xue Bao; 2021 Sep; 37(9):3071-3087. PubMed ID: 34622618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of TALE-adenine base editors in plants.
    Zhang D; Boch J
    Plant Biotechnol J; 2024 May; 22(5):1067-1077. PubMed ID: 37997697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly efficient base editing with expanded targeting scope using SpCas9-NG in rabbits.
    Liu Z; Shan H; Chen S; Chen M; Song Y; Lai L; Li Z
    FASEB J; 2020 Jan; 34(1):588-596. PubMed ID: 31914687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human cleaving embryos enable robust homozygotic nucleotide substitutions by base editors.
    Zhang M; Zhou C; Wei Y; Xu C; Pan H; Ying W; Sun Y; Sun Y; Xiao Q; Yao N; Zhong W; Li Y; Wu K; Yuan G; Mitalipov S; Chen ZJ; Yang H
    Genome Biol; 2019 May; 20(1):101. PubMed ID: 31118069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decreasing predictable DNA off-target effects and narrowing editing windows of adenine base editors by fusing human Rad18 protein variant.
    Wang Z; Yuan H; Yang L; Ma L; Zhang Y; Deng J; Li X; Xiao W; Li Z; Qiu J; Ouyang H; Pang D
    Int J Biol Macromol; 2023 Dec; 253(Pt 7):127418. PubMed ID: 37848112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Programmable A-to-Y base editing by fusing an adenine base editor with an N-methylpurine DNA glycosylase.
    Tong H; Wang X; Liu Y; Liu N; Li Y; Luo J; Ma Q; Wu D; Li J; Xu C; Yang H
    Nat Biotechnol; 2023 Aug; 41(8):1080-1084. PubMed ID: 36624150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Programmable deaminase-free base editors for G-to-Y conversion by engineered glycosylase.
    Tong H; Liu N; Wei Y; Zhou Y; Li Y; Wu D; Jin M; Cui S; Li H; Li G; Zhou J; Yuan Y; Zhang H; Shi L; Yao X; Yang H
    Natl Sci Rev; 2023 Aug; 10(8):nwad143. PubMed ID: 37404457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of an efficient and precise adenine base editor (ABE) with expanded target range in allotetraploid cotton (Gossypium hirsutum).
    Wang G; Xu Z; Wang F; Huang Y; Xin Y; Liang S; Li B; Si H; Sun L; Wang Q; Ding X; Zhu X; Chen L; Yu L; Lindsey K; Zhang X; Jin S
    BMC Biol; 2022 Feb; 20(1):45. PubMed ID: 35164736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.